Documentation

Mathlib.RingTheory.WittVector.MulCoeff

Leading terms of Witt vector multiplication #

The goal of this file is to study the leading terms of the formula for the n+1st coefficient of a product of Witt vectors x and y over a ring of characteristic p. We aim to isolate the n+1st coefficients of x and y, and express the rest of the product in terms of a function of the lower coefficients.

For most of this file we work with terms of type MvPolynomial (Fin 2 × ℕ) ℤ. We will eventually evaluate them in k, but first we must take care of a calculation that needs to happen in characteristic 0.

Main declarations #

(∑ i ∈ range n, (y.coeff i)^(p^(n-i)) * p^i.val) *
(∑ i ∈ range n, (y.coeff i)^(p^(n-i)) * p^i.val)
Equations
Instances For

    remainder p n represents the remainder term from mul_polyOfInterest_aux3. wittPolyProd p (n+1) will have variables up to n+1, but remainder will only have variables up to n.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      This is the polynomial whose degree we want to get a handle on.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem WittVector.peval_polyOfInterest (p : ) [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] (n : ) (x y : WittVector p k) :
        peval (polyOfInterest p n) ![fun (i : ) => x.coeff i, fun (i : ) => y.coeff i] = (x * y).coeff (n + 1) + p ^ (n + 1) * x.coeff (n + 1) * y.coeff (n + 1) - y.coeff (n + 1) * iFinset.range (n + 1 + 1), p ^ i * x.coeff i ^ p ^ (n + 1 - i) - x.coeff (n + 1) * iFinset.range (n + 1 + 1), p ^ i * y.coeff i ^ p ^ (n + 1 - i)
        theorem WittVector.peval_polyOfInterest' (p : ) [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] (n : ) (x y : WittVector p k) :
        peval (polyOfInterest p n) ![fun (i : ) => x.coeff i, fun (i : ) => y.coeff i] = (x * y).coeff (n + 1) - y.coeff (n + 1) * x.coeff 0 ^ p ^ (n + 1) - x.coeff (n + 1) * y.coeff 0 ^ p ^ (n + 1)

        The characteristic p version of peval_polyOfInterest

        theorem WittVector.nth_mul_coeff' (p : ) [hp : Fact (Nat.Prime p)] (k : Type u_1) [CommRing k] [CharP k p] (n : ) :
        ∃ (f : TruncatedWittVector p (n + 1) kTruncatedWittVector p (n + 1) kk), ∀ (x y : WittVector p k), f (truncateFun (n + 1) x) (truncateFun (n + 1) y) = (x * y).coeff (n + 1) - y.coeff (n + 1) * x.coeff 0 ^ p ^ (n + 1) - x.coeff (n + 1) * y.coeff 0 ^ p ^ (n + 1)
        theorem WittVector.nth_mul_coeff (p : ) [hp : Fact (Nat.Prime p)] (k : Type u_1) [CommRing k] [CharP k p] (n : ) :
        ∃ (f : TruncatedWittVector p (n + 1) kTruncatedWittVector p (n + 1) kk), ∀ (x y : WittVector p k), (x * y).coeff (n + 1) = x.coeff (n + 1) * y.coeff 0 ^ p ^ (n + 1) + y.coeff (n + 1) * x.coeff 0 ^ p ^ (n + 1) + f (truncateFun (n + 1) x) (truncateFun (n + 1) y)
        def WittVector.nthRemainder (p : ) [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] (n : ) :
        (Fin (n + 1)k)(Fin (n + 1)k)k

        Produces the "remainder function" of the n+1st coefficient, which does not depend on the n+1st coefficients of the inputs.

        Equations
        Instances For
          theorem WittVector.nthRemainder_spec (p : ) [hp : Fact (Nat.Prime p)] {k : Type u_1} [CommRing k] [CharP k p] (n : ) (x y : WittVector p k) :