Documentation

Mathlib.RingTheory.WittVector.Verschiebung

The Verschiebung operator #

References #

def WittVector.verschiebungFun {p : } {R : Type u_1} [CommRing R] (x : WittVector p R) :

verschiebungFun x shifts the coefficients of x up by one, by inserting 0 as the 0th coefficient. x.coeff i then becomes (verchiebungFun x).coeff (i + 1).

verschiebungFun is the underlying function of the additive monoid hom WittVector.verschiebung.

Equations
@[simp]

The 0th Verschiebung polynomial is 0. For n > 0, the nth Verschiebung polynomial is the variable X (n-1).

Equations
instance WittVector.verschiebungFun_isPoly (p : ) :
IsPoly p fun (R : Type u_3) (_Rcr : CommRing R) => verschiebungFun

WittVector.verschiebung has polynomial structure given by WittVector.verschiebungPoly.

noncomputable def WittVector.verschiebung {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] :

verschiebung x shifts the coefficients of x up by one, by inserting 0 as the 0th coefficient. x.coeff i then becomes (verchiebung x).coeff (i + 1).

This is an additive monoid hom with underlying function verschiebung_fun.

Equations
theorem WittVector.verschiebung_isPoly {p : } [hp : Fact (Nat.Prime p)] :
IsPoly p fun (x : Type u_3) (x_1 : CommRing x) => verschiebung

WittVector.verschiebung is a polynomial function.

@[simp]
theorem WittVector.map_verschiebung {p : } {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [hp : Fact (Nat.Prime p)] (f : R →+* S) (x : WittVector p R) :

verschiebung is a natural transformation

@[simp]
theorem WittVector.verschiebung_coeff_zero {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) :
theorem WittVector.verschiebung_coeff_add_one {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) (n : ) :
@[simp]
theorem WittVector.verschiebung_coeff_succ {p : } {R : Type u_1} [CommRing R] [hp : Fact (Nat.Prime p)] (x : WittVector p R) (n : ) :