Documentation

Poly.ForMathlib.CategoryTheory.NatTrans

def CategoryTheory.NatTrans.IsCartesian {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} (α : F G) :

A natural transformation is cartesian if all its naturality squares are pullbacks.

Equations
Instances For
    theorem CategoryTheory.NatTrans.isIso_of_isCartesian {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] [Limits.HasTerminal J] {F G : Functor J C} (α : F G) ( : IsCartesian α) [IsIso (α.app (⊤_ J))] :
    theorem CategoryTheory.NatTrans.IsCartesian.comp {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {F G H : Functor J C} {α : F G} {β : G H} ( : IsCartesian α) ( : IsCartesian β) :
    theorem CategoryTheory.NatTrans.IsCartesian.whiskerRight {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {D : Type u_2} [Category.{u_3, u_2} D] {F G : Functor J C} {α : F G} ( : IsCartesian α) (H : Functor C D) [∀ (i j : J) (f : j i), Limits.PreservesLimit (Limits.cospan (α.app i) (G.map f)) H] :
    theorem CategoryTheory.NatTrans.IsCartesian.whiskerLeft {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {K : Type u_3} [Category.{u_4, u_3} K] {F G : Functor J C} {α : F G} ( : IsCartesian α) (H : Functor K J) :
    theorem CategoryTheory.NatTrans.IsCartesian.hcomp {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {K : Type u_3} [Category.{u_4, u_3} K] {F G : Functor J C} {M N : Functor C K} {α : F G} {β : M N} ( : IsCartesian α) ( : IsCartesian β) [∀ (i j : J) (f : j i), Limits.PreservesLimit (Limits.cospan (α.app i) (G.map f)) M] :
    theorem CategoryTheory.NatTrans.IsCartesian.vComp {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {C₇ : Type u₇} {C₈ : Type u₈} [Category.{v₇, u₇} C₇] [Category.{v₈, u₈} C₈] {L' : Functor C₃ C₇} {R'' : Functor C₄ C₈} {B'' : Functor C₇ C₈} {w : TwoSquare T L R B} {w' : TwoSquare B L' R'' B''} [∀ (i j : C₁) (f : j i), Limits.PreservesLimit (Limits.cospan (w.app i) ((L.comp B).map f)) R''] :
    theorem CategoryTheory.NatTrans.IsCartesian.hComp {C₁ : Type u₁} {C₂ : Type u₂} {C₃ : Type u₃} {C₄ : Type u₄} [Category.{v₁, u₁} C₁] [Category.{v₂, u₂} C₂] [Category.{v₃, u₃} C₃] [Category.{v₄, u₄} C₄] {T : Functor C₁ C₂} {L : Functor C₁ C₃} {R : Functor C₂ C₄} {B : Functor C₃ C₄} {C₅ : Type u₅} {C₆ : Type u₆} [Category.{v₅, u₅} C₅] [Category.{v₆, u₆} C₆] {T' : Functor C₂ C₅} {R' : Functor C₅ C₆} {B' : Functor C₄ C₆} {w : TwoSquare T L R B} {w' : TwoSquare T' R R' B'} [∀ (i j : C₁) (f : j i), Limits.PreservesLimit (Limits.cospan (w.app i) ((L.comp B).map f)) B'] :