Documentation

Poly.UvPoly.UPFan

def CategoryTheory.UvPoly.equiv {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) (Γ X : C) :
(Γ P @ X) (b : Γ B) × (Limits.pullback b P.p X)

Universal property of the polynomial functor.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.UvPoly.equiv_symm_apply {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) (Γ X : C) (u : (b : Γ B) × (Limits.pullback b P.p X)) :
    (P.equiv Γ X).symm u = P.lift u.fst u.snd
    @[simp]
    theorem CategoryTheory.UvPoly.equiv_apply {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) (Γ X : C) (f : Γ P @ X) :
    (P.equiv Γ X) f = P.proj f