Documentation

GroupoidModel.FibrationForMathlib.Displayed.Cartesian

Cartesian lifts #

We introduce the structures Display.Cartesian and Display.CoCartesian carrying data witnessing that a given lift is cartesian and cocartesian, respectively.

Specialized to the display category structure of a functor P : E ⥤ C, we obtain the class CartMor of cartesian morphisms in E. The type CartMor P is defined in terms of the predicate isCartesianMorphism.

Given a displayed category structure on a type family F : C → Type, and an object I : C, we shall refer to the type F I as the "fiber" of F at I. For a morphism f : I ⟶ J in C, and objects X : F I and Y : F J, we shall refer to a hom-over g : X ⟶[f] Y as a "lift" of f to X and Y.

We prove the following closure properties of the class CartMor of cartesian morphisms:

instCatCart provides a category instance for the class of cartesian morphisms, and Cart.forget provides the forgetful functor from the category of cartesian morphisms to the domain category E.

Main declarations #

Given g : CartLift f Y, we have

Similarly, given g : CoCartLift f X, we have

class CategoryTheory.Display.Cartesian {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) :
Type (max (max (max u_1 u_3) u_4) u_5)

A lift g : X ⟶[f] Y is cartesian if for every morphism u : K ⟶ I in the base and every hom-over g' : Z ⟶[u ≫ f] Y over the composite u ≫ f, there is a unique morphism k : Z ⟶[u] X over u such that k ≫ g = g'.

       _ _ _ _ _ _ _ _ _ _ _
      /           g'        \
     |                      v
     Z - - - - > X --------> Y
     _   ∃!k     _   g       _
     |           |           |
     |           |           |
     v           v           v
     K --------> I --------> J
          u            f
Instances
    class CategoryTheory.Display.Cartesian' {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} E] {P : CategoryTheory.Functor E C} {X : E} {Y : E} (g : X Y) :
    Type (max (max u_2 u_4) u_5)
    Instances
      class CategoryTheory.Display.CoCartesian {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) :
      Type (max (max (max u_1 u_3) u_4) u_5)

      A lift g : X ⟶[f] Y is cocartesian if for all morphisms u in the base and g' : X ⟶[f ≫ u] Z, there is a unique morphism k : Y ⟶[u] Z over u such that g ≫ k = g'.

             _ _ _ _ _ _ _ _ _ _ _
            /          g'         \
           |                      v
           X ------- > Y - - - - > Z
           _    g      _    ∃!k    _
           |           |           |
           |           |           |
           v           v           v
           I --------> J --------> K
                f            u
      
      Instances
        def CategoryTheory.Display.Cartesian.gap {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) [CategoryTheory.Display.Cartesian g] {K : C} {Z : F K} {u : K I} (g' : Z ⟶[CategoryTheory.CategoryStruct.comp u f] Y) :
        Z ⟶[u] X

        gap g u g' is the canonical map from a lift g' : Z ⟶[u ≫ f] X to a cartesian lift g of f.

        Equations
        Instances For
          def CategoryTheory.Display.Cartesian.gapCast {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) [CategoryTheory.Display.Cartesian g] {K : C} {Z : F K} (u : K I) {f' : K J} (g' : Z ⟶[f'] Y) (w : f' = CategoryTheory.CategoryStruct.comp u f) :
          Z ⟶[u] X

          A variant of gaplift for g' : Z ⟶[f'] Y with casting along f' = u ≫ f baked into the definition.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Display.Cartesian.gap_cast {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) [CategoryTheory.Display.Cartesian g] {K : C} {Z : F K} (u : K I) {f' : K J} (g' : Z ⟶[f'] Y) (w : f' = CategoryTheory.CategoryStruct.comp u f) :
            @[simp]

            The composition of the gap lift and the cartesian hom-over is the given hom-over.

            @[simp]
            theorem CategoryTheory.Display.Cartesian.gaplift_uniq {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) [CategoryTheory.Display.Cartesian g] {K : C} {Z : F K} {u : K I} (g' : Z ⟶[CategoryTheory.CategoryStruct.comp u f] Y) (v : Z ⟶[u] X) (hv : CategoryTheory.DisplayStruct.comp_over v g = g') :

            The uniqueness part of the universal property of the gap lift.

            The identity hom-over is cartesian.

            Equations
            • One or more equations did not get rendered due to their size.
            instance CategoryTheory.Display.Cartesian.instComp {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} {K : C} {X : F I} {Y : F J} {Z : F K} {f₁ : I J} {f₂ : J K} (g₁ : X ⟶[f₁] Y) [CategoryTheory.Display.Cartesian g₁] (g₂ : Y ⟶[f₂] Z) [CategoryTheory.Display.Cartesian g₂] :

            Cartesian based-lifts are closed under composition.

            Equations
            • One or more equations did not get rendered due to their size.
            class CategoryTheory.Display.CartLift {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} (f : I J) (tgt : F J) extends CategoryTheory.Display.Lift :
            Type (max (max (max u_1 u_3) u_4) u_5)

            The type of cartesian lifts of a morphism f with fixed target.

            Instances
              def CategoryTheory.Display.HasCartLift {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} (f : I J) (tgt : F J) :

              Mere existence of a cartesian lift with fixed target.

              Equations
              Instances For
                class CategoryTheory.Display.CoCartLift {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {F : CType u_3} [CategoryTheory.Display F] {I : C} {J : C} (f : I J) (src : F I) extends CategoryTheory.Display.CoLift :
                Type (max (max (max u_1 u_3) u_4) u_5)

                The type of cocartesian lifts of a morphism f with fixed source.

                Instances