Documentation

GroupoidModel.FibrationForMathlib.Displayed.Fiber

Fibers of a functor #

This files define the type Fiber of a functor at a given object in the base category.

We provide the category instance on the fibers of a functor. We show that for a functor P, the fiber of the opposite functor P.op are isomorphic to the opposites of the fiber categories of P.

Notation #

We provide the following notations:

The fiber of a functor at a given object in the codomain category.

Equations
  • (P ⁻¹ I) = { X : E // P.obj X = I }
Instances For

    The essential fiber of a functor at a given object in the codomain category.

    • obj : E
    • iso : P.obj self.obj I
    Instances For

      The lax fiber of a functor at a given object in the codomain category.

      • obj : E
      • from_base : I P.obj self.obj
      Instances For
        theorem CategoryTheory.Fiber.ext {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} (X : P ⁻¹ I) (Y : P ⁻¹ I) (h : X = Y) :
        X = Y

        Coercion from the fiber to the domain.

        Equations
        • CategoryTheory.Fiber.instCoeOut = { coe := fun (x : P ⁻¹ I) => x }
        theorem CategoryTheory.Fiber.coe_mk {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} E] {P : CategoryTheory.Functor E C} {I : C} {X : E} (h : P.obj X = I) :
        X, h = X
        theorem CategoryTheory.Fiber.coe_inj {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} (X : P ⁻¹ I) (Y : P ⁻¹ I) :
        X = Y X = Y
        theorem CategoryTheory.Fiber.over_eq {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} (X : P ⁻¹ I) (Y : P ⁻¹ I) :
        P.obj X = P.obj Y

        A tautological construction of an element in the fiber of the image of a domain element.

        Equations
        Instances For

          Regarding an element of the domain as an element in the Fiber of its image.

          Equations
          theorem CategoryTheory.Fiber.Total.ext_iff {C : Type u_1} {E : Type u_2} :
          ∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} (x y : CategoryTheory.Fiber.Total), x = y x.base = y.base HEq x.fiber y.fiber
          theorem CategoryTheory.Fiber.Total.ext {C : Type u_1} {E : Type u_2} :
          ∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} (x y : CategoryTheory.Fiber.Total), x.base = y.baseHEq x.fiber y.fiberx = y

          The total space of a map.

          • base : C

            The base object in C

          • fiber : P ⁻¹ self.base

            The object in the fiber of the base object.

          Instances For

            The category structure on the fibers of a functor.

            Equations
            @[simp]
            @[simp]
            theorem CategoryTheory.Fiber.forget_obj {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} (x : P ⁻¹ I) :
            CategoryTheory.Fiber.forget.obj x = x
            @[simp]
            theorem CategoryTheory.Fiber.forget_map {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} (x : P ⁻¹ I) (y : P ⁻¹ I) (f : x y) :
            CategoryTheory.Fiber.forget.map f = f

            The forgetful functor from a fiber to the domain category.

            Equations
            • CategoryTheory.Fiber.forget = { obj := fun (x : P ⁻¹ I) => x, map := fun (x y : P ⁻¹ I) (f : x y) => f, map_id := , map_comp := }
            Instances For
              @[simp]
              theorem CategoryTheory.Fiber.hom_ext {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} {X : P ⁻¹ I} {Y : P ⁻¹ I} {f : X Y} {g : X Y} (h : f = g) :
              f = g

              Coercion from the fiber to the domain.

              Equations
              • CategoryTheory.EFiber.instCoeOut = { coe := fun (X : P ⁻¹ᵉ I) => X.obj }

              A tautological construction of an element in the fiber of the image of a domain element.

              Equations
              Instances For

                Regarding an element of the domain as an element in the essential fiber of its image.

                Equations

                The category structure on the essential fibers of a functor.

                Equations

                The Fibers of the opposite functor P.op are in bijection with the the Fibers of P.

                Equations
                Instances For

                  The Fibers of the opposite functor P.op are isomorphic to the the Fibers of P.

                  Equations
                  Instances For
                    theorem CategoryTheory.Fiber.Op.unop_op_map {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} {X : P.op ⁻¹ Opposite.op I} {Y : P.op ⁻¹ Opposite.op I} (f : X Y) :
                    Opposite.unop (P.op.map f) = P.map (f).unop
                    theorem CategoryTheory.Fiber.Op.op_map_unop {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} {X : (P ⁻¹ I)ᵒᵖ} {Y : (P ⁻¹ I)ᵒᵖ} (f : X Y) :
                    P.op.map (f.unop).op = (P.map f.unop).op

                    The fiber categories of the opposite functor P.op are isomorphic to the opposites of the fiber categories of P.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For