Documentation

GroupoidModel.FibrationForMathlib.Displayed.widget_test

Widget test for fibred category theory #

def CategoryTheory.eqToHomMap {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {I : C} {I' : C} {J : C} {J' : C} (w : I = I') (w' : J = J') (f : I J) :
I' J'

Transporting a morphism f : I ⟶ J along equalities w : I = I' and w' : J = J'. Note: It might be a good idea to add this to eqToHom file.

Equations
Instances For
    @[simp]

    The diagram below commutes:

        I --eqToHom w --> J
        |                 |
      f |                 | eqToHomMap w w' f
        v                 v
        I' --eqToHom w'-> J'
    
    def CategoryTheory.eqToHomMap' {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {I : C} {I' : C} {J : C} {J' : C} (w : I = I') (w' : J = J') (f : I J) :
    I' J'

    Transporting a morphism f : I ⟶ J along equalities w : I = I' and w' : J = J'. Note: It might be a good idea to add this to eqToHom file.

    Equations
    Instances For
      class CategoryTheory.DisplayStruct {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] (F : CType u_2) :
      Type (max (max (max u_1 u_2) (u_3 + 1)) u_4)
      • HomOver : {I J : C} → (I J)F IF JType u_3

        The type of morphisms indexed over morphisms of C.

      • id_over : {I : C} → (X : F I) → X ⟶[CategoryTheory.CategoryStruct.id I] X

        The identity morphism overlying the identity morphism of C.

      • comp_over : {I J K : C} → {f₁ : I J} → {f₂ : J K} → {X : F I} → {Y : F J} → {Z : F K} → (X ⟶[f₁] Y)(Y ⟶[f₂] Z)X ⟶[CategoryTheory.CategoryStruct.comp f₁ f₂] Z

        Composition of morphisms overlying composition of morphisms of C.

      Instances
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          class CategoryTheory.Display {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] (F : CType u_2) extends CategoryTheory.DisplayStruct :
          Type (max (max (max u_1 u_2) u_3) (u_4 + 1))
          Instances
            @[simp]
            theorem CategoryTheory.Display.id_comp_cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [self : CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) :
            @[simp]
            theorem CategoryTheory.Display.comp_id_cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [self : CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) :
            @[simp]
            theorem CategoryTheory.Display.assoc_cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [self : CategoryTheory.Display F] {I : C} {J : C} {K : C} {L : C} {f₁ : I J} {f₂ : J K} {f₃ : K L} {X : F I} {Y : F J} {Z : F K} {W : F L} (g₁ : X ⟶[f₁] Y) (g₂ : Y ⟶[f₂] Z) (g₃ : Z ⟶[f₃] W) :
            structure CategoryTheory.BasedLift {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {E : Type u_3} [CategoryTheory.Category.{u_5, u_3} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} (f : I J) (X : P ⁻¹ I) (Y : P ⁻¹ J) :
            Type u_5

            The type of lifts of a given morphism in the base with fixed source and target in the Fibres of the domain and codomain respectively.

            Instances For
              structure CategoryTheory.EBasedLift {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {E : Type u_3} [CategoryTheory.Category.{u_5, u_3} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} (f : I J) (X : P ⁻¹ᵉ I) (Y : P ⁻¹ᵉ J) :
              Type u_5

              The structure of based-lifts up to an isomorphism of the domain objects in the base.

                   X -------------------->    Y
                   _                          -
                   |            |             |
                   |            |             |
                   v            v             v
              P.obj X ---------> I ---------> J
                         ≅             f
              
              Instances For
                @[simp]
                theorem CategoryTheory.BasedLift.comp_hom {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {E : Type u_4} [CategoryTheory.Category.{u_6, u_4} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} {K : C} {f₁ : I J} {f₂ : J K} {X : P ⁻¹ I} {Y : P ⁻¹ J} {Z : P ⁻¹ K} (g₁ : CategoryTheory.BasedLift f₁ X Y) (g₂ : CategoryTheory.BasedLift f₂ Y Z) :
                (g₁.comp g₂).hom = CategoryTheory.CategoryStruct.comp g₁.hom g₂.hom
                def CategoryTheory.BasedLift.comp {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {E : Type u_4} [CategoryTheory.Category.{u_6, u_4} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} {K : C} {f₁ : I J} {f₂ : J K} {X : P ⁻¹ I} {Y : P ⁻¹ J} {Z : P ⁻¹ K} (g₁ : CategoryTheory.BasedLift f₁ X Y) (g₂ : CategoryTheory.BasedLift f₂ Y Z) :

                The composition of based-lifts

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.BasedLift.cast_hom {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {E : Type u_4} [CategoryTheory.Category.{u_6, u_4} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} {f : I J} {f' : I J} {X : P ⁻¹ I} {Y : P ⁻¹ J} (w : f = f') (g : CategoryTheory.BasedLift f X Y) :
                  def CategoryTheory.BasedLift.cast {C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {E : Type u_4} [CategoryTheory.Category.{u_6, u_4} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} {f : I J} {f' : I J} {X : P ⁻¹ I} {Y : P ⁻¹ J} (w : f = f') (g : CategoryTheory.BasedLift f X Y) :
                  Equations
                  Instances For
                    def CategoryTheory.EBasedLift.comp {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {E : Type u_3} [CategoryTheory.Category.{u_5, u_3} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} {K : C} {f₁ : I J} {f₂ : J K} {X : P ⁻¹ᵉ I} {Y : P ⁻¹ᵉ J} {Z : P ⁻¹ᵉ K} (g₁ : CategoryTheory.EBasedLift f₁ X Y) (g₂ : CategoryTheory.EBasedLift f₂ Y Z) :
                    Equations
                    Instances For