Documentation

GroupoidModel.FibrationForMathlib.FibredCats.Basic

Basic #

We provide the category instance on the fibers of a functor. We show that for a functor P, the fiber of the opposite functor P.op are isomorphic to the opposites of the fiber categories of P.

We provide the following notations:

@[reducible, inline]

The fiber of a functor at a given object in the base category.

Equations
Instances For

    The category structure on the fibers of a functor.

    Equations
    @[simp]
    theorem CategoryTheory.FiberCat.forget_obj {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} (x : P ⁻¹ c) :
    CategoryTheory.FiberCat.forget.obj x = x
    @[simp]
    theorem CategoryTheory.FiberCat.forget_map {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} (x : P ⁻¹ c) (y : P ⁻¹ c) (f : x y) :
    CategoryTheory.FiberCat.forget.map f = f

    The forgetful functor from a fiber to the domain category.

    Equations
    • CategoryTheory.FiberCat.forget = { obj := fun (x : P ⁻¹ c) => x, map := fun (x y : P ⁻¹ c) (f : x y) => f, map_id := , map_comp := }
    Instances For
      theorem CategoryTheory.FiberCat.hom_ext {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {x : P ⁻¹ c} {y : P ⁻¹ c} {f : x y} {g : x y} (h : f = g) :
      f = g

      The fibres of the opposite functor P.op are in bijection with the the fibres of P.

      Equations
      Instances For

        The fibres of the opposite functor P.op are isomorphic to the the fibres of P.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.FiberCat.Op.unop_op_map {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {x : P.op ⁻¹ Opposite.op c} {y : P.op ⁻¹ Opposite.op c} (f : x y) :
          Opposite.unop (P.op.map f) = P.map (f).unop
          @[simp]
          theorem CategoryTheory.FiberCat.Op.op_map_unop {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {x : (P ⁻¹ c)ᵒᵖ} {y : (P ⁻¹ c)ᵒᵖ} (f : x y) :
          P.op.map (f.unop).op = (P.map f.unop).op

          The fiber categories of the opposite functor P.op are isomorphic to the opposites of the fiber categories of P.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For