Documentation

GroupoidModel.FibrationForMathlib.FibredCats.Display_test

Displayed Category Of A Functor #

Given a type family F : C → Type* on a category C we then define the displayed category Display F.

For a functor P : E ⥤ C, we define the structure BasedLift f src tgt as the type of lifts in E of a given morphism f : c ⟶ d in C which have a fixed source src and a fixed target tgt in the fibers of c and d respectively. We call the elements of BasedLift f src tgt based-lifts of f with source src and target tgt.

We also provide various useful constructors for based-lifts:

We provide the following notations:

We show that for a functor P, the type BasedLift P induces a display category structure on the fiber family fun c => P⁻¹ c.

def CategoryTheory.fiberCast {C : Type u_1} (F : CType u_2) {I : C} {I' : C} (w : I = I') (X : F I) :
F I'

Cast an element of a fiber along an equality of the base objects.

Equations
Instances For
    def CategoryTheory.eqToHomMap {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {I : C} {I' : C} {J : C} {J' : C} (w : I = I') (w' : J = J') (f : I J) :
    I' J'

    Transporting a morphism f : I ⟶ J along equalities w : I = I' and w' : J = J'. Note: It might be a good idea to add this to eqToHom file.

    Equations
    Instances For
      @[simp]
      Equations
      • =
      Instances For
        @[simp]
        theorem CategoryTheory.fiber_cast_trans {C : Type u_1} (F : CType u_2) {I : C} {I' : C} {I'' : C} (X : F I) {w : I = I'} {w' : I' = I''} {w'' : I = I''} :
        w'wX = w''X
        theorem CategoryTheory.fiber_cast_cast {C : Type u_1} (F : CType u_2) {I : C} {I' : C} (X : F I) {w : I = I'} {w' : I' = I} :
        w'wX = X
        class CategoryTheory.DisplayStruct {C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] (F : CType u_2) :
        Type (max (max (max u_1 u_2) (u_3 + 1)) u_4)
        • HomOver : {I J : C} → (I J)F IF JType u_3

          The type of morphisms indexed over morphisms of C.

        • id_over : {I : C} → (X : F I) → X ⟶[CategoryTheory.CategoryStruct.id I] X

          The identity morphism overlying the identity morphism of C.

        • comp_over : {I J K : C} → {f₁ : I J} → {f₂ : J K} → {X : F I} → {Y : F J} → {Z : F K} → (X ⟶[f₁] Y)(Y ⟶[f₂] Z)X ⟶[CategoryTheory.CategoryStruct.comp f₁ f₂] Z

          Composition of morphisms overlying composition of morphisms of C.

        Instances
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            class CategoryTheory.DisplayStruct.CastEq {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.DisplayStruct F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) (g' : X ⟶[f'] Y) :
            • base_eq : f = f'
            • cast_eq : g = g'
            Instances
              theorem CategoryTheory.DisplayStruct.CastEq.base_eq {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.DisplayStruct F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) (g' : X ⟶[f'] Y) [self : CategoryTheory.DisplayStruct.CastEq g g'] :
              f = f'
              theorem CategoryTheory.DisplayStruct.CastEq.cast_eq {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.DisplayStruct F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} {g : X ⟶[f] Y} {g' : X ⟶[f'] Y} [self : CategoryTheory.DisplayStruct.CastEq g g'] :
              g = g'
              class CategoryTheory.Display {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] (F : CType u_2) extends CategoryTheory.DisplayStruct :
              Type (max (max (max u_1 u_2) u_3) (u_4 + 1))
              Instances
                @[simp]
                theorem CategoryTheory.Display.id_comp_cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [self : CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) :
                @[simp]
                theorem CategoryTheory.Display.comp_id_cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [self : CategoryTheory.Display F] {I : C} {J : C} {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) :
                @[simp]
                theorem CategoryTheory.Display.assoc_cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [self : CategoryTheory.Display F] {I : C} {J : C} {K : C} {L : C} {f₁ : I J} {f₂ : J K} {f₃ : K L} {X : F I} {Y : F J} {Z : F K} {W : F L} (g₁ : X ⟶[f₁] Y) (g₂ : Y ⟶[f₂] Z) (g₃ : Z ⟶[f₃] W) :
                def CategoryTheory.HomOver.cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} (w : f = f') (g : X ⟶[f] Y) :
                X ⟶[f'] Y
                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.HomOver.cast_trans {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {f' : I J} {f'' : I J} {X : F I} {Y : F J} {w : f = f'} {w' : f' = f''} (g : X ⟶[f] Y) :
                  w'wg = g
                  theorem CategoryTheory.HomOver.cast_unique {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} {w : f = f'} {w' : f = f'} (g : X ⟶[f] Y) :
                  wg = w'g
                  theorem CategoryTheory.HomOver.cast_cast {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} (w : f = f') (w' : f' = f) (g : X ⟶[f'] Y) :
                  g = g
                  def CategoryTheory.HomOver.eqToHom {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {I' : C} (w : I = I') (X : F I) :

                  EqToHom w X is a hom-over eqToHom w from X to w ▸ X.

                  Equations
                  Instances For
                    def CategoryTheory.HomOver.eqToHomMap {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {I' : C} {J' : C} (w : I = I') (w' : J = J') {f : I J} {X : F I} {Y : F J} (g : X ⟶[f] Y) :
                    (wX) ⟶[CategoryTheory.eqToHomMap w w' f] w'Y
                    Equations
                    Instances For
                      def CategoryTheory.HomOver.eqToHomMapId {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {I' : C} (w : I = I') {X : F I} {Y : F I} (g : X ⟶[CategoryTheory.CategoryStruct.id I] Y) :
                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.HomOver.castEquiv_symm_apply {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} (w : f = f') (g : X ⟶[f'] Y) :
                        (CategoryTheory.HomOver.castEquiv w).symm g = g
                        @[simp]
                        theorem CategoryTheory.HomOver.castEquiv_apply {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} (w : f = f') (g : X ⟶[f] Y) :
                        def CategoryTheory.HomOver.castEquiv {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {F : CType u_2} [CategoryTheory.Display F] {I : C} {J : C} {f : I J} {f' : I J} {X : F I} {Y : F J} (w : f = f') :
                        (X ⟶[f] Y) X ⟶[f'] Y
                        Equations
                        Instances For