Documentation

GroupoidModel.FibrationForMathlib.FibredCats.VerticalLift

Vertical Lifts #

We call a lift v : x ⟶[𝟙 c] y of the identity morphism a vertical lift/morphism.

Question: Can we use extension types to define VertHom so that the proofs of vertHomOfBasedLift and basedLiftOfVertHom are more concise/automated?

@[reducible, inline]
Equations
Instances For

    A based-lift of the identity generates a morphism in `Vert P.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Coercing a based-lift x ⟶[𝟙 c] y of the identity morphism 𝟙 c to a morphism x ⟶ y in the fiber P⁻¹ c.

        Equations
        @[simp]
        theorem CategoryTheory.equivFiberHomBasedLift_apply_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {x : P ⁻¹ c} {y : P ⁻¹ c} (g : x y) :
        (CategoryTheory.equivFiberHomBasedLift g).hom = g
        @[simp]
        theorem CategoryTheory.equivFiberHomBasedLift_symm_apply_coe {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {x : P ⁻¹ c} {y : P ⁻¹ c} (g : CategoryTheory.BasedLift P (CategoryTheory.CategoryStruct.id c) x y) :
        (CategoryTheory.equivFiberHomBasedLift.symm g) = g.hom

        The bijection between the hom-type of the fiber P⁻¹ c and the based-lifts of the identity morphism of c.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.equivVertHomBasedLift_apply_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {x : P ⁻¹ c} {y : P ⁻¹ c} (g : c, x c, y) :
          (CategoryTheory.equivVertHomBasedLift g).hom = CategoryTheory.Sigma.SigmaHom.rec (motive := fun (a a_1 : (i : C) × P ⁻¹ i) (x_1 : CategoryTheory.Sigma.SigmaHom a a_1) => c, x = ac, y = a_1HEq g x_1(x y)) (fun {i : C} {X Y : P ⁻¹ i} (a : X Y) (h : c, x = i, X) => Eq.rec (motive := fun (x : CategoryTheory.Vert P) (x_1 : i, X = x) => (f : x c, y) → c, y = i, YHEq f (CategoryTheory.Sigma.SigmaHom.mk a)(x.snd y)) (fun (f : i, X c, y) (h : c, y = i, Y) => Eq.rec (motive := fun (x : CategoryTheory.Vert P) (x_1 : i, Y = x) => (f : i, X x) → HEq f (CategoryTheory.Sigma.SigmaHom.mk a)(X x.snd)) (fun (f : i, X i, Y) (h : HEq f (CategoryTheory.Sigma.SigmaHom.mk a)) => a) f) g) g
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The bijection between the type of the isomorphisms in the fiber P⁻¹ c and the iso-based-lifts of the identity morphism of c.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Vertical cartesian morphisms are isomorphism.

              Equations
              Instances For