Documentation

GroupoidModel.ForMathlib

This file contains declarations missing from mathlib, to be upstreamed.

@[simp]
theorem CategoryTheory.Limits.IsTerminal.comp_from_assoc {C : Type u₁} [Category.{v₁, u₁} C] {Z : C} (t : IsTerminal Z) {X Y : C} (f : X Y) {Z✝ : C} (h : Z Z✝) :
@[simp]
theorem CategoryTheory.Limits.IsInitial.to_comp_assoc {C : Type u₁} [Category.{v₁, u₁} C] {X : C} (t : IsInitial X) {Y Z : C} (f : Y Z) {Z✝ : C} (h : Z Z✝) :
theorem CategoryTheory.Limits.PullbackCone.IsLimit.comp_lift_assoc {C : Type u_1} [Category.{u_2, u_1} C] {X Y Z W' W : C} {f : X Z} {g : Y Z} {t : PullbackCone f g} (σ : W' W) (ht : IsLimit t) (h : W X) (k : W Y) (w : CategoryStruct.comp h f = CategoryStruct.comp k g) {Z✝ : C} (h✝ : t.pt Z✝) :
@[simp]
theorem Part.assert_dom {α : Type u_1} (P : Prop) (x : PPart α) :
(assert P x).Dom ∃ (h : P), (x h).Dom
theorem CategoryTheory.Cat.eqToHom_hom_aux {C1 C2 : Cat} (x y : C1) (eq : C1 = C2) :
(x y) = ((eqToHom eq).obj x (eqToHom eq).obj y)

This is the proof of equality used in the eqToHom in Cat.eqToHom_hom

theorem CategoryTheory.Cat.eqToHom_hom {C1 C2 : Cat} {x y : C1} (f : x y) (eq : C1 = C2) :
(eqToHom eq).map f = cast f

This is the turns the hom part of eqToHom functors into a cast

theorem CategoryTheory.Cat.eqToHom_obj {C1 C2 : Cat} (x : C1) (eq : C1 = C2) :
(eqToHom eq).obj x = cast x

This turns the object part of eqToHom functors into casts

@[reducible, inline]
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Grothendieck.obj_ext_hEq {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {x y : Grothendieck A} (hbase : x.base = y.base) (hfiber : HEq x.fiber y.fiber) :
      x = y

      This proves that base of an eqToHom morphism in the category Grothendieck A is an eqToHom morphism

      theorem CategoryTheory.Grothendieck.eqToHom_fiber_aux {Γ : Cat} {A : Functor (↑Γ) Cat} {g1 g2 : Grothendieck A} (eq : g1 = g2) :

      This is the proof of equality used in the eqToHom in Grothendieck.eqToHom_fiber

      theorem CategoryTheory.Grothendieck.eqToHom_fiber {Γ : Cat} {A : Functor (↑Γ) Cat} {g1 g2 : Grothendieck A} (eq : g1 = g2) :

      This proves that fiber of an eqToHom morphism in the category Grothendieck A is an eqToHom morphism

      theorem CategoryTheory.Grothendieck.obj_ext_cast {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {x y : Grothendieck A} (hbase : x.base = y.base) (hfiber : cast x.fiber = y.fiber) :
      x = y

      A morphism in the Grothendieck construction is an isomorphism if

      • the morphism in the base is an isomorphism; and
      • the fiber morphism is an isomorphism.
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.IsPullback.of_iso_isPullback {C : Type u₁} [Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : IsPullback fst snd f g) {Q : C} (i : Q P) :

        The chosen terminal object in Grpd is terminal.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The chosen product of categories C × D yields a product cone in Grpd.

          Equations
          Instances For

            The product cone in Grpd is indeed a product.

            Equations
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.

              The identity in the category of groupoids equals the identity functor.

              Composition in the category of groupoids equals functor composition.

              theorem CategoryTheory.Grpd.eqToHom_obj {C1 C2 : Grpd} (x : C1) (eq : C1 = C2) :
              (eqToHom eq).obj x = cast x
              @[simp]
              theorem CategoryTheory.AsSmall.up_map_down_map {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
              down.map (up.map f) = f
              @[simp]
              Equations
              • One or more equations did not get rendered due to their size.
              @[reducible, inline]
              abbrev CategoryTheory.Grpd.homOf {C D : Type u} [Groupoid C] [Groupoid D] (F : Functor C D) :
              of C of D
              Equations
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem CategoryTheory.Core.eqToIso_hom {C : Type u} [Category.{v, u} C] {a b : Core C} (h1 : a = b) (h2 : (inclusion C).obj a = (inclusion C).obj b) :
                      theorem CategoryTheory.Core.functorToCore_naturality_left {C : Type u₁} [Category.{v₁, u₁} C] {G : Type u₂} [Groupoid G] {G' : Type u₃} [Groupoid G'] (H : Functor G C) (F : Functor G' G) :
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        Equations
                        Instances For

                          In the category of categories, if functor F : C ⥤ D reflects isomorphisms then taking the Core is pullback stable along F

                          Core C ---- inclusion -----> C | | | | | | Core.map' F F | | | | V V Core D ---- inclusion -----> D

                          @[reducible, inline]

                          The chosen terminal object in D.

                          Equations
                          Instances For

                            Product cones in D are defined using chosen products in C

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              The chosen product cone in D is a limit.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Grpd.map_id_obj {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x : Γ} {a : (A.obj x)} :
                                      theorem CategoryTheory.Grpd.map_id_map {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x : Γ} {a b : (A.obj x)} {f : a b} :
                                      theorem CategoryTheory.Grpd.map_comp_obj {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x y z : Γ} {f : x y} {g : y z} {a : (A.obj x)} :
                                      (A.map (CategoryStruct.comp f g)).obj a = (A.map g).obj ((A.map f).obj a)
                                      theorem CategoryTheory.Grpd.map_comp_map {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x y z : Γ} {f : x y} {g : y z} {a b : (A.obj x)} {φ : a b} :
                                      @[simp]
                                      theorem CategoryTheory.Cat.map_id_obj {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Cat} {x : Γ} {a : (A.obj x)} :
                                      theorem CategoryTheory.Cat.map_id_map {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Cat} {x : Γ} {a b : (A.obj x)} {f : a b} :
                                      theorem CategoryTheory.Grpd.eqToHom_hom_aux {C1 C2 : Grpd} (x y : C1) (eq : C1 = C2) :
                                      (x y) = ((eqToHom eq).obj x (eqToHom eq).obj y)

                                      This is the proof of equality used in the eqToHom in Cat.eqToHom_hom

                                      theorem CategoryTheory.Grpd.eqToHom_hom {C1 C2 : Grpd} {x y : C1} (f : x y) (eq : C1 = C2) :
                                      (eqToHom eq).map f = cast f

                                      This is the turns the hom part of eqToHom functors into a cast

                                      @[simp]
                                      theorem CategoryTheory.Grothendieck.ιCompPre {Γ : Type u₂} [Category.{v₂, u₂} Γ] {Δ : Type u₃} [Category.{v₃, u₃} Δ] (σ : Functor Δ Γ) (A : Functor Γ Cat) (x : Δ) :
                                      (ι (σ.comp A) x).comp (pre A σ) = ι A (σ.obj x)
                                      def Equiv.psigmaCongrProp {α₁ : Sort u_1} {α₂ : Sort u_2} {β₁ : α₁Prop} {β₂ : α₂Prop} (f : α₁ α₂) (F : ∀ (a : α₁), β₁ a β₂ (f a)) :
                                      PSigma β₁ PSigma β₂
                                      Equations
                                      Instances For
                                        noncomputable def CategoryTheory.Limits.pullbackHomEquiv {𝒞 : Type u} [Category.{v, u} 𝒞] [HasPullbacks 𝒞] {A B C Γ : 𝒞} {f : A C} {g : B C} :
                                        (Γ pullback f g) (fst : Γ A) × (snd : Γ B) ×' CategoryStruct.comp fst f = CategoryStruct.comp snd g
                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For