@[reducible, inline]
The chosen terminal object in Grpd
.
Equations
Instances For
The chosen terminal object in Grpd
is terminal.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The chosen product of categories C × D
yields a product cone in Grpd
.
Equations
- C.prodCone D = CategoryTheory.Limits.BinaryFan.mk (CategoryTheory.Prod.fst ↑C ↑D) (CategoryTheory.Prod.snd ↑C ↑D)
Instances For
The product cone in Grpd
is indeed a product.
Equations
- X.isLimitProdCone Y = CategoryTheory.Limits.BinaryFan.isLimitMk (fun (S : CategoryTheory.Limits.BinaryFan X Y) => CategoryTheory.Functor.prod' S.fst S.snd) ⋯ ⋯ ⋯
Instances For
Equations
- One or more equations did not get rendered due to their size.
The identity in the category of groupoids equals the identity functor.
Composition in the category of groupoids equals functor composition.
@[simp]
theorem
CategoryTheory.Grpd.map_id_obj
{Γ : Type u₂}
[Category.{v₂, u₂} Γ]
{A : Functor Γ Grpd}
{x : Γ}
{a : ↑(A.obj x)}
:
@[simp]
theorem
CategoryTheory.Grpd.map_id_map
{Γ : Type u₂}
[Category.{v₂, u₂} Γ]
{A : Functor Γ Grpd}
{x : Γ}
{a b : ↑(A.obj x)}
{f : a ⟶ b}
:
(A.map (CategoryStruct.id x)).map f = CategoryStruct.comp (eqToHom ⋯) (CategoryStruct.comp f (eqToHom ⋯))
@[simp]
theorem
CategoryTheory.Grpd.map_comp_map
{Γ : Type u₂}
[Category.{v₂, u₂} Γ]
{A : Functor Γ Grpd}
{x y z : Γ}
{f : x ⟶ y}
{g : y ⟶ z}
{a b : ↑(A.obj x)}
{φ : a ⟶ b}
:
(A.map (CategoryStruct.comp f g)).map φ = CategoryStruct.comp (eqToHom ⋯) (CategoryStruct.comp ((A.map g).map ((A.map f).map φ)) (eqToHom ⋯))
theorem
CategoryTheory.Grpd.map_comp_map'
{Γ : Type u₂}
[Category.{v₂, u₂} Γ]
{A : Functor Γ Grpd}
{x y z : Γ}
{f : x ⟶ y}
{g : y ⟶ z}
{a b : ↑(A.obj x)}
{φ : a ⟶ b}
:
(A.map g).map ((A.map f).map φ) = CategoryStruct.comp (eqToHom ⋯) (CategoryStruct.comp ((A.map (CategoryStruct.comp f g)).map φ) (eqToHom ⋯))
@[simp]
@[simp]
@[simp]
theorem
CategoryTheory.Grpd.map_eqToHom_map
{Γ : Type u}
[Category.{v, u} Γ]
(F : Functor Γ Grpd)
{x y : Γ}
(h : x = y)
{t s : ↑(F.obj x)}
(f : t ⟶ s)
:
(F.map (eqToHom h)).map f = CategoryStruct.comp (eqToHom ⋯) (CategoryStruct.comp (cast ⋯ f) (eqToHom ⋯))
@[simp]
theorem
CategoryTheory.Grpd.eqToHom_app
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(F G : Functor C D)
(h : F = G)
(X : C)
: