Documentation

GroupoidModel.ForMathlib.CategoryTheory.Grpd

The chosen terminal object in Grpd is terminal.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The chosen product of categories C × D yields a product cone in Grpd.

    Equations
    Instances For

      The product cone in Grpd is indeed a product.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.

        The identity in the category of groupoids equals the identity functor.

        theorem CategoryTheory.Grpd.comp_eq_comp {X Y Z : Grpd} (F : X Y) (G : Y Z) :

        Composition in the category of groupoids equals functor composition.

        theorem CategoryTheory.Grpd.eqToHom_obj {C1 C2 : Grpd} (x : C1) (eq : C1 = C2) :
        (eqToHom eq).obj x = cast x
        @[simp]
        theorem CategoryTheory.Grpd.map_id_obj {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x : Γ} {a : (A.obj x)} :
        @[simp]
        theorem CategoryTheory.Grpd.map_id_map {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x : Γ} {a b : (A.obj x)} {f : a b} :
        @[simp]
        theorem CategoryTheory.Grpd.map_comp_obj {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x y z : Γ} {f : x y} {g : y z} {a : (A.obj x)} :
        (A.map (CategoryStruct.comp f g)).obj a = (A.map g).obj ((A.map f).obj a)
        @[simp]
        theorem CategoryTheory.Grpd.map_comp_map {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x y z : Γ} {f : x y} {g : y z} {a b : (A.obj x)} {φ : a b} :
        theorem CategoryTheory.Grpd.map_comp_map' {Γ : Type u₂} [Category.{v₂, u₂} Γ] {A : Functor Γ Grpd} {x y z : Γ} {f : x y} {g : y z} {a b : (A.obj x)} {φ : a b} :
        @[simp]
        theorem CategoryTheory.Grpd.id_obj {C : Grpd} (X : C) :
        @[simp]
        theorem CategoryTheory.Grpd.comp_obj {C D E : Grpd} (F : C D) (G : D E) (X : C) :
        (CategoryStruct.comp F G).obj X = G.obj (F.obj X)
        theorem CategoryTheory.Grpd.map_eqToHom_obj {Γ : Type u} [Category.{v, u} Γ] (F : Functor Γ Grpd) {x y : Γ} (h : x = y) (t : (F.obj x)) :
        (F.map (eqToHom h)).obj t = cast t
        theorem CategoryTheory.Grpd.eqToHom_hom_aux {C1 C2 : Grpd} (x y : C1) (eq : C1 = C2) :
        (x y) = ((eqToHom eq).obj x (eqToHom eq).obj y)

        This is the proof of equality used in the eqToHom in Grpd.eqToHom_hom

        theorem CategoryTheory.Grpd.eqToHom_hom {C1 C2 : Grpd} {x y : C1} (f : x y) (eq : C1 = C2) :
        (eqToHom eq).map f = cast f

        This is the turns the hom part of eqToHom functors into a cast

        @[simp]
        theorem CategoryTheory.Grpd.map_eqToHom_map {Γ : Type u} [Category.{v, u} Γ] (F : Functor Γ Grpd) {x y : Γ} (h : x = y) {t s : (F.obj x)} (f : t s) :
        @[simp]
        theorem CategoryTheory.Grpd.eqToHom_app {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (F G : Functor C D) (h : F = G) (X : C) :
        (eqToHom h).app X = eqToHom