def
CategoryTheory.NatTrans.isoOfCodGroupoid
{A : Type u}
[Category.{v, u} A]
{B : Type u₁}
[Groupoid B]
{F G : Functor A B}
(h : NatTrans F G)
:
Equations
- h.isoOfCodGroupoid = { hom := h, inv := { app := fun (a : A) => CategoryTheory.Groupoid.inv (h.app a), naturality := ⋯ }, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.NatTrans.isoOfCodGroupoid_inv_app
{A : Type u}
[Category.{v, u} A]
{B : Type u₁}
[Groupoid B]
{F G : Functor A B}
(h : NatTrans F G)
(a : A)
:
@[simp]
theorem
CategoryTheory.NatTrans.isoOfCodGroupoid_hom
{A : Type u}
[Category.{v, u} A]
{B : Type u₁}
[Groupoid B]
{F G : Functor A B}
(h : NatTrans F G)
:
def
CategoryTheory.NatTrans.inv
{A : Type u}
[Category.{v, u} A]
{B : Type u₁}
[Groupoid B]
{F G : Functor A B}
(h : NatTrans F G)
:
Equations
- h.inv = h.isoOfCodGroupoid.inv
Instances For
@[simp]
theorem
CategoryTheory.NatTrans.inv_vcomp
{A : Type u}
[Category.{v, u} A]
{B : Type u₁}
[Groupoid B]
{F G : Functor A B}
(h : NatTrans F G)
:
@[simp]
theorem
CategoryTheory.NatTrans.vcomp_inv
{A : Type u}
[Category.{v, u} A]
{B : Type u₁}
[Groupoid B]
{F G : Functor A B}
(h : NatTrans F G)
:
instance
CategoryTheory.instGroupoidFunctor_groupoidModel
{A : Type u_1}
[Category.{u_3, u_1} A]
{B : Type u_2}
[Groupoid B]
:
Equations
- One or more equations did not get rendered due to their size.