Documentation

GroupoidModel.ForPoly

theorem CategoryTheory.UvPoly.η_naturality' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {E B E' B' : C} {P : UvPoly E B} {P' : UvPoly E' B'} (e : E E') (b : B B') (hp : IsPullback P.p e b P'.p) :
theorem CategoryTheory.UvPoly.ev_naturality {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {E B E' B' : C} {P : UvPoly E B} {P' : UvPoly E' B'} (e : E E') (b : B B') (hp : IsPullback P.p e b P'.p) :
theorem CategoryTheory.UvPoly.associator_eq_id {C : Type u_1} {D : Type u_2} {E : Type u_3} {E' : Type u_4} [Category.{u_5, u_1} C] [Category.{u_6, u_2} D] [Category.{u_7, u_3} E] [Category.{u_8, u_4} E'] (F : Functor C D) (G : Functor D E) (H : Functor E E') :
F.associator G H = Iso.refl (F.comp (G.comp H))
theorem CategoryTheory.UvPoly.whiskerLeft_twice' {C : Type u_1} {D : Type u_2} {E : Type u_3} {B : Type u_4} [Category.{u_5, u_1} C] [Category.{u_6, u_2} D] [Category.{u_7, u_3} E] [Category.{u_8, u_4} B] (F : Functor B C) (G : Functor C D) {H K : Functor D E} (α : H K) :
@[simp]
theorem CategoryTheory.UvPoly.cartesianNatTrans_fstProj {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B E' B' : C} (P : UvPoly E B) (P' : UvPoly E' B') (e : E E') (b : B B') (pb : IsPullback P.p e b P'.p) (X : C) :
theorem CategoryTheory.UvPoly.fan_snd_map' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B E' B' : C} {P : UvPoly E B} {P' : UvPoly E' B'} (e : E E') (b : B B') (A : C) (hp : IsPullback P.p e b P'.p) :
theorem CategoryTheory.UvPoly.fan_snd_map {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B A E' B' A' : C} {P : UvPoly E B} {P' : UvPoly E' B'} (e : E E') (b : B B') (a : A A') (hp : IsPullback P.p e b P'.p) :
theorem CategoryTheory.UvPoly.ε_map {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B A E' B' A' : C} {P : UvPoly E B} {P' : UvPoly E' B'} (e : E E') (b : B B') (a : A A') (hp : IsPullback P.p e b P'.p) :
def CategoryTheory.UvPoly.Equiv.fst {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) :
Γ B
Equations
Instances For
    theorem CategoryTheory.UvPoly.Equiv.fst_eq {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) :
    fst P X pair = CategoryStruct.comp pair (P.fstProj X)
    def CategoryTheory.UvPoly.Equiv.snd {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) :
    Limits.pullback (fst P X pair) P.p X
    Equations
    Instances For
      def CategoryTheory.UvPoly.Equiv.snd' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g (fst P X pair) P.p) :
      R X
      Equations
      Instances For
        theorem CategoryTheory.UvPoly.Equiv.snd_eq_snd' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) :
        snd P X pair = snd' P X pair
        def CategoryTheory.UvPoly.Equiv.mk {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) (x : Limits.pullback b P.p X) :
        Γ P @ X
        Equations
        Instances For
          def CategoryTheory.UvPoly.Equiv.mk' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g b P.p) (x : R X) :
          Γ P @ X
          Equations
          Instances For
            theorem CategoryTheory.UvPoly.Equiv.mk_eq_mk' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) (x : Limits.pullback b P.p X) :
            mk P X b x = mk' P X b x
            @[simp]
            theorem CategoryTheory.UvPoly.Equiv.fst_mk {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) (x : Limits.pullback b P.p X) :
            fst P X (mk P X b x) = b
            @[simp]
            theorem CategoryTheory.UvPoly.Equiv.fst_mk' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g b P.p) (x : R X) :
            fst P X (mk' P X b H x) = b
            @[simp]
            theorem CategoryTheory.UvPoly.Equiv.mk'_comp_fstProj {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g b P.p) (x : R X) :
            CategoryStruct.comp (mk' P X b H x) (P.fstProj X) = b
            theorem CategoryTheory.UvPoly.Equiv.fst_comp_left {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) {Δ : C} (f : Δ Γ) :
            fst P X (CategoryStruct.comp f pair) = CategoryStruct.comp f (fst P X pair)
            theorem CategoryTheory.UvPoly.Equiv.fst_comp_right {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X Y : C) (f : X Y) (pair : Γ P @ X) :
            fst P Y (CategoryStruct.comp pair (P.functor.map f)) = fst P X pair
            theorem CategoryTheory.UvPoly.Equiv.snd'_eq {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g (fst P X pair) P.p) :
            theorem CategoryTheory.UvPoly.Equiv.snd'_eq_snd' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g (fst P X pair) P.p) {R' : C} {f' : R' Γ} {g' : R' E} (H' : IsPullback f' g' (fst P X pair) P.p) :
            snd' P X pair H = CategoryStruct.comp (IsPullback.isoIsPullback Γ E H H').hom (snd' P X pair H')

            Switch the selected pullback R used in UvPoly.Equiv.snd' with a different pullback R'.

            @[simp]
            theorem CategoryTheory.UvPoly.Equiv.snd'_mk' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g b P.p) (x : R X) :
            snd' P X (mk' P X b H x) = x
            theorem CategoryTheory.UvPoly.Equiv.snd_mk_heq {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) (x : Limits.pullback b P.p X) :
            snd P X (mk P X b x) x
            theorem CategoryTheory.UvPoly.Equiv.snd_mk {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) (x : Limits.pullback b P.p X) :
            snd P X (mk P X b x) = CategoryStruct.comp (eqToHom ) x
            theorem CategoryTheory.UvPoly.Equiv.snd'_comp_left {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g (fst P X pair) P.p) {Δ : C} (σ : Δ Γ) {R' : C} {f' : R' Δ} {g' : R' E} (H' : IsPullback f' g' (CategoryStruct.comp σ (fst P X pair)) P.p) :
            snd' P X (CategoryStruct.comp σ pair) = CategoryStruct.comp (H.lift (CategoryStruct.comp f' σ) g' ) (snd' P X pair H)
            theorem CategoryTheory.UvPoly.Equiv.snd'_comp_right {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X Y : C) (f : X Y) (pair : Γ P @ X) {R : C} {f1 : R Γ} {f2 : R E} (H : IsPullback f1 f2 (fst P X pair) P.p) :
            snd' P Y (CategoryStruct.comp pair (P.functor.map f)) = CategoryStruct.comp (snd' P X pair H) f
            theorem CategoryTheory.UvPoly.Equiv.snd_comp_right {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X Y : C) (f : X Y) (pair : Γ P @ X) :
            theorem CategoryTheory.UvPoly.Equiv.ext' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) {pair₁ pair₂ : Γ P @ X} {R : C} {f : R Γ} {g : R E} (H : IsPullback f g (fst P X pair₁) P.p) (h1 : fst P X pair₁ = fst P X pair₂) (h2 : snd' P X pair₁ H = snd' P X pair₂ ) :
            pair₁ = pair₂
            theorem CategoryTheory.UvPoly.Equiv.mk'_eq_mk' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (b : Γ B) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g b P.p) (x : R X) {R' : C} {f' : R' Γ} {g' : R' E} (H' : IsPullback f' g' b P.p) :
            mk' P X b H x = mk' P X b H' (CategoryStruct.comp (IsPullback.isoIsPullback Γ E H H').inv x)

            Switch the selected pullback R used in UvPoly.Equiv.mk' with a different pullback R'.

            @[simp]
            theorem CategoryTheory.UvPoly.Equiv.eta' {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) {R : C} {f1 : R Γ} {f2 : R E} (H : IsPullback f1 f2 (fst P X pair) P.p) :
            mk' P X (fst P X pair) H (snd' P X pair H) = pair
            @[simp]
            theorem CategoryTheory.UvPoly.Equiv.eta {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) (pair : Γ P @ X) :
            mk P X (fst P X pair) (snd P X pair) = pair
            theorem CategoryTheory.UvPoly.Equiv.mk'_comp_right {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X Y : C) (f : X Y) (b : Γ B) {R : C} {f1 : R Γ} {f2 : R E} (H : IsPullback f1 f2 b P.p) (x : R X) :
            CategoryStruct.comp (mk' P X b H x) (P.functor.map f) = mk' P Y b H (CategoryStruct.comp x f)
            theorem CategoryTheory.UvPoly.Equiv.mk_comp_right {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X Y : C) (f : X Y) (b : Γ B) (x : Limits.pullback b P.p X) :
            theorem CategoryTheory.UvPoly.Equiv.mk'_comp_left {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) {Δ : C} (b : Γ B) {R : C} {f : R Γ} {g : R E} (H : IsPullback f g b P.p) (x : R X) (σ : Δ Γ) (σb : Δ B) (eq : CategoryStruct.comp σ b = σb) {R' : C} {f' : R' Δ} {g' : R' E} (H' : IsPullback f' g' σb P.p) :
            CategoryStruct.comp σ (mk' P X b H x) = mk' P X σb H' (CategoryStruct.comp (H.lift (CategoryStruct.comp f' σ) g' ) x)
            theorem CategoryTheory.UvPoly.Equiv.mk_comp_left {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {Γ : C} (X : C) {Δ : C} (b : Γ B) (x : Limits.pullback b P.p X) (σ : Δ Γ) :
            theorem CategoryTheory.UvPoly.Equiv.mk'_comp_cartesianNatTrans_app {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B : C} (P : UvPoly E B) {E' B' Γ X : C} {P' : UvPoly E' B'} (y : Γ B) (R : C) (f : R Γ) (g : R E) (H : IsPullback f g y P.p) (x : R X) (e : E E') (b : B B') (hp : IsPullback P.p e b P'.p) :
            CategoryStruct.comp (mk' P X y H x) ((P.cartesianNatTrans P' b e hp).app X) = mk' P' X (CategoryStruct.comp y b) x
            def CategoryTheory.UvPoly.compDomEquiv {𝒞 : Type u_1} [Category.{u_2, u_1} 𝒞] [Limits.HasTerminal 𝒞] [Limits.HasPullbacks 𝒞] {Γ E B D A : 𝒞} {P : UvPoly E B} {Q : UvPoly D A} :
            (Γ P.compDom Q) (AB : Γ P @ A) × (α : Γ E) × (β : Γ D) ×' (w : CategoryStruct.comp AB (P.fstProj A) = CategoryStruct.comp α P.p) ×' CategoryStruct.comp β Q.p = CategoryStruct.comp (Limits.pullback.lift AB α w) (PartialProduct.fan P A).snd
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def CategoryTheory.UvPoly.compP {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B D A : C} (P : UvPoly E B) (Q : UvPoly D A) :
              P.compDom Q P @ A
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.UvPoly.compDomEquiv_symm_compP {𝒞 : Type u_1} [Category.{u_2, u_1} 𝒞] [Limits.HasTerminal 𝒞] [Limits.HasPullbacks 𝒞] {Γ E B D A : 𝒞} {P : UvPoly E B} {Q : UvPoly D A} (AB : Γ P @ A) (α : Γ E) (β : Γ D) (w : CategoryStruct.comp AB (P.fstProj A) = CategoryStruct.comp α P.p) (h : CategoryStruct.comp β Q.p = CategoryStruct.comp (Limits.pullback.lift AB α w) (PartialProduct.fan P A).snd) :
                def CategoryTheory.UvPoly.compDomMap {𝒞 : Type u_1} [Category.{u_2, u_1} 𝒞] [Limits.HasTerminal 𝒞] [Limits.HasPullbacks 𝒞] {E B D A E' B' D' A' : 𝒞} {P : UvPoly E B} {Q : UvPoly D A} {P' : UvPoly E' B'} {Q' : UvPoly D' A'} (e : E E') (d : D D') (b : B B') (a : A A') (hp : IsPullback P.p e b P'.p) (hq : IsPullback Q.p d a Q'.p) :
                P.compDom Q P'.compDom Q'
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem CategoryTheory.UvPoly.compDomMap_isPullback {𝒞 : Type u_1} [Category.{u_2, u_1} 𝒞] [Limits.HasTerminal 𝒞] [Limits.HasPullbacks 𝒞] {E B D A E' B' D' A' : 𝒞} {P : UvPoly E B} {Q : UvPoly D A} {P' : UvPoly E' B'} {Q' : UvPoly D' A'} (e : E E') (d : D D') (b : B B') (a : A A') (hp : IsPullback P.p e b P'.p) (hq : IsPullback Q.p d a Q'.p) :
                  IsPullback (compDomMap e d b a hp hq) (P.compP Q) (P'.compP Q') (CategoryStruct.comp ((P.cartesianNatTrans P' b e hp).app A) (P'.functor.map a))
                  theorem CategoryTheory.UvPoly.fst_verticalNatTrans_app {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B F : C} (P : UvPoly E B) (Q : UvPoly F B) (ρ : E F) (h : P.p = CategoryStruct.comp ρ Q.p) {Γ : C} (X : C) (pair : Γ Q @ X) :
                  Equiv.fst P X (CategoryStruct.comp pair ((P.verticalNatTrans Q ρ h).app X)) = Equiv.fst Q X pair
                  theorem CategoryTheory.UvPoly.snd'_verticalNatTrans_app {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B F : C} (P : UvPoly E B) (Q : UvPoly F B) (ρ : E F) (h : P.p = CategoryStruct.comp ρ Q.p) {Γ : C} (X : C) (pair : Γ Q @ X) {R : C} {f : R Γ} {g : R F} (H : IsPullback f g (Equiv.fst Q X pair) Q.p) {R' : C} {f' : R' Γ} {g' : R' E} (H' : IsPullback f' g' (Equiv.fst Q X pair) P.p) :
                  Equiv.snd' P X (CategoryStruct.comp pair ((P.verticalNatTrans Q ρ h).app X)) = CategoryStruct.comp (H.lift f' (CategoryStruct.comp g' ρ) ) (Equiv.snd' Q X pair H)
                  theorem CategoryTheory.UvPoly.mk'_comp_verticalNatTrans_app {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [Limits.HasTerminal C] {E B F : C} (P : UvPoly E B) (Q : UvPoly F B) (ρ : E F) (h : P.p = CategoryStruct.comp ρ Q.p) {Γ : C} (X : C) (b : Γ B) {R : C} {f : R Γ} {g : R F} (H : IsPullback f g b Q.p) (x : R X) {R' : C} {f' : R' Γ} {g' : R' E} (H' : IsPullback f' g' b P.p) :
                  CategoryStruct.comp (Equiv.mk' Q X b H x) ((P.verticalNatTrans Q ρ h).app X) = Equiv.mk' P X b H' (CategoryStruct.comp (H.lift f' (CategoryStruct.comp g' ρ) ) x)