Documentation

GroupoidModel.ForPoly

def CategoryTheory.UvPoly.compDomEquiv {𝒞 : Type u_1} [Category.{u_2, u_1} 𝒞] [Limits.HasTerminal 𝒞] [Limits.HasPullbacks 𝒞] {Γ E B D A : 𝒞} {P : UvPoly E B} {Q : UvPoly D A} :
(Γ P.compDom Q) (AB : Γ P.functor.obj A) × (α : Γ E) × (β : Γ D) ×' (w : CategoryStruct.comp AB (P.fstProj A) = CategoryStruct.comp α P.p) ×' CategoryStruct.comp β Q.p = CategoryStruct.comp (Limits.pullback.lift AB α w) (PartialProduct.fan P A).snd
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.UvPoly.compDomEquiv_symm_comp_p {𝒞 : Type u_1} [Category.{u_2, u_1} 𝒞] [Limits.HasTerminal 𝒞] [Limits.HasPullbacks 𝒞] {Γ E B D A : 𝒞} {P : UvPoly E B} {Q : UvPoly D A} (AB : Γ P.functor.obj A) (α : Γ E) (β : Γ D) (w : CategoryStruct.comp AB (P.fstProj A) = CategoryStruct.comp α P.p) (h : CategoryStruct.comp β Q.p = CategoryStruct.comp (Limits.pullback.lift AB α w) (PartialProduct.fan P A).snd) :