theorem
UvPoly.pair_proj
{š : Type u_2}
[CategoryTheory.Category.{u_1, u_2} š]
[CategoryTheory.Limits.HasTerminal š]
[CategoryTheory.Limits.HasPullbacks š]
{E B : š}
(P : UvPoly E B)
(A : š)
{Ī : š}
(b : Ī ā¶ B)
(e : CategoryTheory.Limits.pullback b P.p ā¶ A)
:
def
UvPoly.genPb.snd
{š : Type u_1}
[CategoryTheory.Category.{u_2, u_1} š]
[CategoryTheory.Limits.HasTerminal š]
[CategoryTheory.Limits.HasPullbacks š]
{E B : š}
(P : UvPoly E B)
(A : š)
:
Instances For
theorem
UvPoly.genPb.condition
{š : Type u_2}
[CategoryTheory.Category.{u_1, u_2} š]
[CategoryTheory.Limits.HasTerminal š]
[CategoryTheory.Limits.HasPullbacks š]
{E B : š}
(P : UvPoly E B)
{A : š}
:
def
UvPoly.compDomEquiv
{š : Type u_1}
[CategoryTheory.Category.{u_2, u_1} š]
[CategoryTheory.Limits.HasTerminal š]
[CategoryTheory.Limits.HasPullbacks š]
{Ī E B D A : š}
{P : UvPoly E B}
{Q : UvPoly D A}
:
(Ī ā¶ P.compDom Q) ā (AB : Ī ā¶ P.functor.obj A) Ć
(Ī± : Ī ā¶ E) Ć
(Ī² : Ī ā¶ D) Ć'
(h : CategoryTheory.CategoryStruct.comp AB (P.proj A) = CategoryTheory.CategoryStruct.comp Ī± P.p) Ć'
CategoryTheory.CategoryStruct.comp Ī² Q.p = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.lift AB Ī± h) (genPb.uā P A)
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
instLCCPsh_groupoidModel
{š : Type u_1}
[CategoryTheory.SmallCategory š]
:
LCC (CategoryTheory.Psh š)