Documentation

GroupoidModel.Grothendieck.Groupoidal.IsPullback

The Grothendieck construction as a pullback of categories #

toPGrpd is the lift induced by the pullback property of PGrpd ∫(A) ------- toPGrpd ---------> PGrpd --------> PCat | | | | | | forget PGrpd.forgetToGrpd PCat.forgetToCat | | | | | | v v v Γ--------------A---------------> Grpd --------> Cat

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]

    We also provide a definition of toPGrpd as the universal lift of the pullback PGrpd.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The left square is a pullback since the right square and outer square are. ∫(A) ------- toPGrpd ---------> PGrpd --------> PCat | | | | | | forget PGrpd.forgetToGrpd PCat.forgetToCat | | | | | | v v v Γ--------------A---------------> Grpd --------> Cat

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        sec is the universal lift in the following diagram, which is a section of Groupoidal.forget α ===== Γ -------α--------------¬ ‖ ↓ sec V ‖ ∫(A) ----------------> PGrpd ‖ | | ‖ | | ‖ forget forgetToGrpd ‖ | | ‖ V V ===== Γ --α ≫ forgetToGrpd--> Grpd

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Grothendieck.Groupoidal.sec_obj_base {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) (x : Γ) :
          ((sec A α h).obj x).base = x
          @[simp]
          @[simp]
          theorem CategoryTheory.Grothendieck.Groupoidal.sec_map_base {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) {x y : Γ} {f : x y} :
          Hom.base ((sec A α h).map f) = f
          @[simp]
          theorem CategoryTheory.Grothendieck.Groupoidal.sec_map_fiber {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) {x y : Γ} {f : x y} :
          Hom.fiber ((sec A α h).map f) = PGrpd.mapFiber' h f
          @[simp]
          Equations
          • =
          Instances For
            @[simp]
            Equations
            • =
            Instances For
              @[simp]
              theorem CategoryTheory.Grothendieck.Groupoidal.pre_toPGrpd {Γ : Type u} [Category.{v, u} Γ] {Δ : Type u₃} [Category.{v₃, u₃} Δ] (σ : Functor Δ Γ) (A : Functor Γ Grpd) :
              (pre A σ).comp (toPGrpd A) = toPGrpd (σ.comp A)
              theorem CategoryTheory.Grothendieck.Groupoidal.sec_naturality {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) {Δ : Type u₃} [Category.{v₃, u₃} Δ] (σ : Functor Δ Γ) :
              σ.comp (sec A α h) = (sec (σ.comp A) (σ.comp α) ).comp (pre A σ)
              @[simp]