Documentation

GroupoidModel.Grothendieck.Groupoidal.IsPullback

The Grothendieck construction as a pullback of categories #

toPGrpd is the lift induced by the pullback property of PGrpd ∫(A) ------- toPGrpd ---------> PGrpd --------> PCat | | | | | | forget PGrpd.forgetToGrpd PCat.forgetToCat | | | | | | v v v Γ--------------A---------------> Grpd --------> Cat

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]

    We also provide a definition of toPGrpd as the universal lift of the pullback PGrpd.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The left square is a pullback since the right square and outer square are. ∫(A) ------- toPGrpd ---------> PGrpd --------> PCat | | | | | | forget PGrpd.forgetToGrpd PCat.forgetToCat | | | | | | v v v Γ--------------A---------------> Grpd --------> Cat

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        sec is the universal lift in the following diagram, which is a section of Groupoidal.forget α ===== Γ -------α--------------¬ ‖ ↓ sec V ‖ ∫(A) ----------------> PGrpd ‖ | | ‖ | | ‖ forget forgetToGrpd ‖ | | ‖ V V ===== Γ --α ≫ forgetToGrpd--> Grpd

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.Groupoidal.sec_obj_base {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) (x : Γ) :
          ((sec A α h).obj x).base = x
          @[simp]
          theorem CategoryTheory.Functor.Groupoidal.sec_obj_fiber {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) (x : Γ) :
          ((sec A α h).obj x).fiber = PGrpd.objFiber' h x
          @[simp]
          theorem CategoryTheory.Functor.Groupoidal.sec_map_base {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) {x y : Γ} {f : x y} :
          Hom.base ((sec A α h).map f) = f
          @[simp]
          theorem CategoryTheory.Functor.Groupoidal.sec_map_fiber {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) {x y : Γ} {f : x y} :
          Hom.fiber ((sec A α h).map f) = PGrpd.mapFiber' h f
          @[simp]
          Equations
          • =
          Instances For
            @[simp]
            Equations
            • =
            Instances For
              @[simp]
              theorem CategoryTheory.Functor.Groupoidal.pre_toPGrpd {Γ : Type u} [Category.{v, u} Γ] {Δ : Type u₃} [Category.{v₃, u₃} Δ] (σ : Functor Δ Γ) (A : Functor Γ Grpd) :
              (pre A σ).comp (toPGrpd A) = toPGrpd (σ.comp A)
              theorem CategoryTheory.Functor.Groupoidal.sec_naturality {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Grpd) (α : Functor Γ PGrpd) (h : α.comp PGrpd.forgetToGrpd = A) {Δ : Type u₃} [Category.{v₃, u₃} Δ] (σ : Functor Δ Γ) :
              σ.comp (sec A α h) = (sec (σ.comp A) (σ.comp α) ).comp (pre A σ)
              theorem CategoryTheory.Functor.Groupoidal.ι_eq_lift {C : Type u} [Category.{v, u} C] (F : Functor C Grpd) (c : C) :
              ι F c = (isPullback F).lift ((ι F c).comp (toPGrpd F)) ((ι F c).comp forget)
              @[simp]
              theorem CategoryTheory.Functor.Groupoidal.preNatIso_hom_app_base {C : Type u} [Category.{v, u} C] {D : Type u₁} [Category.{v₁, u₁} D] (F : Functor C Grpd) {G H : Functor D C} (α : G H) (x : (G.comp F).Groupoidal) :
              Hom.base ((preNatIso F α).hom.app x) = α.hom.app x.base
              @[simp]