def
CategoryTheory.Grothendieck.toPCatObj
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
(x : Grothendieck A)
:
Equations
- x.toPCatObj = { α := ↑(A.obj x.base), str := CategoryTheory.PointedCategory.of (↑(A.obj x.base)) x.fiber }
Instances For
@[simp]
theorem
CategoryTheory.Grothendieck.toPCatObj_α
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
(x : Grothendieck A)
:
@[simp]
theorem
CategoryTheory.Grothendieck.toPCatObj_str
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
(x : Grothendieck A)
:
def
CategoryTheory.Grothendieck.toPCatMap
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{x y : Grothendieck A}
(f : x ⟶ y)
:
Instances For
def
CategoryTheory.Grothendieck.toPCat
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
Functor (Grothendieck A) PCat
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Grothendieck.toPCatObj_fiber_inj
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
{x y : Grothendieck A}
(h : HEq PointedCategory.pt PointedCategory.pt)
:
@[reducible, inline]
abbrev
CategoryTheory.Grothendieck.IsMegaPullback.point
{C : Type u₂}
[Category.{v₂, u₂} C]
(fst : Functor C PCat)
{x y : C}
(f : x ⟶ y)
:
Instances For
def
CategoryTheory.Grothendieck.IsMegaPullback.lift_obj
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
(x : C)
:
Equations
Instances For
def
CategoryTheory.Grothendieck.IsMegaPullback.lift_map
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_map_base
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf3
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{y : C}
:
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf2
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf0
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{y : C}
:
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf1
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber'
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
def
CategoryTheory.Grothendieck.IsMegaPullback.lift
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
:
Functor C (Grothendieck A)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Grothendieck.IsMegaPullback.fac_right
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
:
@[simp]
theorem
CategoryTheory.Grothendieck.IsMegaPullback.fac_left
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
:
theorem
CategoryTheory.Grothendieck.IsMegaPullback.lift_uniq
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u₂}
[Category.{v₂, u₂} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
(m : Functor C (Grothendieck A))
(hl : m.comp (toPCat A) = fst)
(hr : m.comp (forget A) = snd)
:
@[reducible, inline]
abbrev
CategoryTheory.Grothendieck.IsPullback.uLiftGrothendieckForget
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Grothendieck.IsPullback.uLiftToPCat
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
Equations
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Grothendieck.IsPullback.uLiftA
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
Functor ↑(Cat.ofULift Γ) ↑uLiftCat
Equations
Instances For
def
CategoryTheory.Grothendieck.IsPullback.cone
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Grothendieck.IsPullback.pt'
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{s : Limits.PullbackCone uLiftPCatForgetToCat (uLiftA A)}
(x : ↑s.pt)
:
↑(ULift.downFunctor.obj (s.fst.obj x))
Instances For
def
CategoryTheory.Grothendieck.IsPullback.lift
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
(s : Limits.PullbackCone uLiftPCatForgetToCat (uLiftA A))
:
Functor (↑s.pt) (Grothendieck A)
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Grothendieck.IsPullback.lift'
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
(s : Limits.PullbackCone uLiftPCatForgetToCat (uLiftA A))
:
Equations
Instances For
theorem
CategoryTheory.Grothendieck.IsPullback.lift_uniq
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
(s : Limits.PullbackCone uLiftPCatForgetToCat (uLiftA A))
(m : Functor (↑s.pt) (Grothendieck A))
(hl : m.comp (toPCat A) = Functor.comp s.fst ULift.downFunctor)
(hr : m.comp (forget A) = Functor.comp s.snd ULift.downFunctor)
:
theorem
CategoryTheory.Grothendieck.IsPullback.lift_uniq'
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
(s : Limits.PullbackCone uLiftPCatForgetToCat (uLiftA A))
(m : s.pt ⟶ uLiftGrothendieck A)
(hl : CategoryStruct.comp m (uLiftToPCat A) = s.fst)
(hr : CategoryStruct.comp m (uLiftGrothendieckForget A) = s.snd)
:
def
CategoryTheory.Grothendieck.IsPullback.isLimit
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
Limits.IsLimit (cone A)
Equations
Instances For
theorem
CategoryTheory.Grothendieck.isPullback
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
: