Documentation

GroupoidModel.Grothendieck.IsPullback

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Grothendieck.toPCat_map_base {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Cat) {x y : Grothendieck A} (f : x y) :
    ((toPCat A).map f).base = A.map f.base
    @[simp]
    theorem CategoryTheory.Grothendieck.toPCat_map_fiber {Γ : Type u} [Category.{v, u} Γ] (A : Functor Γ Cat) {x y : Grothendieck A} (f : x y) :
    ((toPCat A).map f).fiber = f.fiber
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Grothendieck.IsPullback.point {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) {x y : C} (f : x y) :
      (PCat.forgetToCat.map (fst.map f)).obj (pt fst x) pt fst y
      Equations
      Instances For
        def CategoryTheory.Grothendieck.IsPullback.liftMapFiber {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
        ((snd.comp A).map f).obj (liftObjFiber w x) liftObjFiber w y
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Grothendieck.IsPullback.liftMapFiber_comp {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {x y z : C} (f : x y) (g : y z) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Grothendieck.IsPullback.lift_obj_base {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) (x : C) :
            ((lift fst snd w).obj x).base = snd.obj x
            @[simp]
            theorem CategoryTheory.Grothendieck.IsPullback.lift_obj_fiber {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) (x : C) :
            ((lift fst snd w).obj x).fiber = liftObjFiber w x
            @[simp]
            theorem CategoryTheory.Grothendieck.IsPullback.lift_map_base {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
            ((lift fst snd w).map f).base = snd.map f
            @[simp]
            theorem CategoryTheory.Grothendieck.IsPullback.lift_map_fiber {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
            ((lift fst snd w).map f).fiber = liftMapFiber w f
            @[simp]
            theorem CategoryTheory.Grothendieck.IsPullback.fac_right {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) :
            (lift fst snd w).comp (forget A) = snd
            @[simp]
            theorem CategoryTheory.Grothendieck.IsPullback.fac_left {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) :
            (lift fst snd w).comp (toPCat A) = fst
            theorem CategoryTheory.Grothendieck.IsPullback.lift_uniq {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) (m : Functor C (Grothendieck A)) (hl : m.comp (toPCat A) = fst) (hr : m.comp (forget A) = snd) :
            m = lift fst snd w
            theorem CategoryTheory.Grothendieck.IsPullback.hom_ext {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_1} [Category.{u_2, u_1} C] {m n : Functor C (Grothendieck A)} (hl : m.comp (toPCat A) = n.comp (toPCat A)) (hr : m.comp (forget A) = n.comp (forget A)) :
            m = n
            def CategoryTheory.Grothendieck.IsPullback.aux {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u_2} [inst : Category.{u_3, u_2} C] (Cn : Functor C PCat) (Cw : Functor C Γ) (hC : Cn.comp (forget (Functor.id Cat)) = Cw.comp A) :
            (lift : Functor C (Grothendieck A)) ×' lift.comp (toPCat A) = Cn lift.comp (forget A) = Cw ∀ {l0 l1 : Functor C (Grothendieck A)}, l0.comp (toPCat A) = l1.comp (toPCat A)l0.comp (forget A) = l1.comp (forget A)l0 = l1
            Equations
            Instances For

              The following square is a (meta-theoretic) pullback of functors Grothendieck A --- toPCat ----> PCat | | | | Grothendieck.forget PCat.forgetToCat | | v v Γ--------------A---------> Cat

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For