def
CategoryTheory.Grothendieck.toPCat
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
Functor (Grothendieck A) PCat
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Grothendieck.toPCat_obj_base
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
(x : Grothendieck A)
:
@[simp]
theorem
CategoryTheory.Grothendieck.toPCat_obj_fiber
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
(x : Grothendieck A)
:
@[simp]
theorem
CategoryTheory.Grothendieck.toPCat_map_base
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
{x y : Grothendieck A}
(f : x ⟶ y)
:
@[simp]
theorem
CategoryTheory.Grothendieck.toPCat_map_fiber
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
{x y : Grothendieck A}
(f : x ⟶ y)
:
theorem
CategoryTheory.Grothendieck.toPCat_forgetToCat
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
@[reducible, inline]
abbrev
CategoryTheory.Grothendieck.IsPullback.pt
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(x : C)
:
↑((Functor.id Cat).obj (fst.obj x).base)
Equations
- CategoryTheory.Grothendieck.IsPullback.pt fst x = (fst.obj x).fiber
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Grothendieck.IsPullback.point
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
{x y : C}
(f : x ⟶ y)
:
Equations
- CategoryTheory.Grothendieck.IsPullback.point fst f = (fst.map f).fiber
Instances For
def
CategoryTheory.Grothendieck.IsPullback.liftObjFiber
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
(x : C)
:
Equations
Instances For
def
CategoryTheory.Grothendieck.IsPullback.liftMapFiber
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Grothendieck.IsPullback.liftMapFiber_id
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
(x : C)
:
theorem
CategoryTheory.Grothendieck.IsPullback.liftMapFiber_comp
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
{fst : Functor C PCat}
{snd : Functor C Γ}
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y z : C}
(f : x ⟶ y)
(g : y ⟶ z)
:
liftMapFiber w (CategoryStruct.comp f g) = CategoryStruct.comp (eqToHom ⋯) (CategoryStruct.comp ((A.map (snd.map g)).map (liftMapFiber w f)) (liftMapFiber w g))
def
CategoryTheory.Grothendieck.IsPullback.lift
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
:
Functor C (Grothendieck A)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Grothendieck.IsPullback.lift_obj_base
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
(x : C)
:
@[simp]
theorem
CategoryTheory.Grothendieck.IsPullback.lift_obj_fiber
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
(x : C)
:
@[simp]
theorem
CategoryTheory.Grothendieck.IsPullback.lift_map_base
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
@[simp]
theorem
CategoryTheory.Grothendieck.IsPullback.lift_map_fiber
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
{x y : C}
(f : x ⟶ y)
:
@[simp]
theorem
CategoryTheory.Grothendieck.IsPullback.fac_right
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
:
@[simp]
theorem
CategoryTheory.Grothendieck.IsPullback.fac_left
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
:
theorem
CategoryTheory.Grothendieck.IsPullback.lift_uniq
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_1}
[Category.{u_2, u_1} C]
(fst : Functor C PCat)
(snd : Functor C Γ)
(w : fst.comp PCat.forgetToCat = snd.comp A)
(m : Functor C (Grothendieck A))
(hl : m.comp (toPCat A) = fst)
(hr : m.comp (forget A) = snd)
:
def
CategoryTheory.Grothendieck.IsPullback.aux
{Γ : Type u}
[Category.{v, u} Γ]
{A : Functor Γ Cat}
{C : Type u_2}
[inst : Category.{u_3, u_2} C]
(Cn : Functor C PCat)
(Cw : Functor C Γ)
(hC : Cn.comp (forget (Functor.id Cat)) = Cw.comp A)
:
Equations
- CategoryTheory.Grothendieck.IsPullback.aux Cn Cw hC = ⟨CategoryTheory.Grothendieck.IsPullback.lift Cn Cw hC, ⋯⟩
Instances For
def
CategoryTheory.Grothendieck.isPullback
{Γ : Type u}
[Category.{v, u} Γ]
(A : Functor Γ Cat)
:
(toPCat A).IsPullback (forget A) (forget (Functor.id Cat)) A
The following square is a (meta-theoretic) pullback of functors Grothendieck A --- toPCat ----> PCat | | | | Grothendieck.forget PCat.forgetToCat | | v v Γ--------------A---------> Cat
Equations
- One or more equations did not get rendered due to their size.