Documentation

GroupoidModel.Grothendieck.IsPullback

Equations
Instances For
    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]
        abbrev CategoryTheory.Grothendieck.IsMegaPullback.point {C : Type u₂} [Category.{v₂, u₂} C] (fst : Functor C PCat) {x y : C} (f : x y) :
        (fst.map f).obj (pt fst x) pt fst y
        Equations
        Instances For
          def CategoryTheory.Grothendieck.IsMegaPullback.lift_map {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_map_base {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
            (lift_map w f).base = snd.map f
            theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
            (lift_map w f).fiber = CategoryStruct.comp ((eqToHom ).app (pt fst x)) (((eqToHom w).app y).map (point fst f))
            theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf3 {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {y : C} :
            Cat.of (fst.obj y) = A.obj (snd.obj y)
            theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf2 {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
            (A.map (snd.map f)).obj (((eqToHom w).app x).obj (pt fst x)) = (eqToHom ).obj ((fst.map f).obj (pt fst x))
            theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf0 {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {y : C} :
            (eqToHom ).obj (pt fst y) = ((eqToHom w).app y).obj (pt fst y)
            theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_map_fiber_pf1 {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] {fst : Functor C PCat} {snd : Functor C Γ} (w : fst.comp PCat.forgetToCat = snd.comp A) {x y : C} (f : x y) :
            ((fst.map f).obj (pt fst x) pt fst y) = ((eqToHom ).obj ((fst.map f).obj (pt fst x)) (eqToHom ).obj (pt fst y))
            theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_aux {C D : Cat} {X Y : C} (pf1 : C = D) (pf2 : X = Y) (pf3 : (eqToHom pf1).obj X = (eqToHom pf1).obj Y) :
            HEq (eqToHom pf2) (eqToHom pf3)
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Grothendieck.IsMegaPullback.fac_right {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) :
              (lift fst snd w).comp (forget A) = snd
              @[simp]
              theorem CategoryTheory.Grothendieck.IsMegaPullback.fac_left {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) :
              (lift fst snd w).comp (toPCat A) = fst
              theorem CategoryTheory.Grothendieck.IsMegaPullback.lift_uniq {Γ : Type u} [Category.{v, u} Γ] {A : Functor Γ Cat} {C : Type u₂} [Category.{v₂, u₂} C] (fst : Functor C PCat) (snd : Functor C Γ) (w : fst.comp PCat.forgetToCat = snd.comp A) (m : Functor C (Grothendieck A)) (hl : m.comp (toPCat A) = fst) (hr : m.comp (forget A) = snd) :
              m = lift fst snd w
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For