Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
structure
NaturalModelBase
(Ctx : Type u)
[CategoryTheory.Category.{u_1, u} Ctx]
:
Type (max u (u_1 + 1))
A representable map with choice of representability witnesses.
- Tm : CategoryTheory.Psh Ctx
- Ty : CategoryTheory.Psh Ctx
- disp_pullback {Γ : Ctx} (A : CategoryTheory.yoneda.obj Γ ⟶ self.Ty) : CategoryTheory.IsPullback (self.var A) (CategoryTheory.yoneda.map (self.disp A)) self.tp A
Instances For
Pullback of representable natural transformation #
def
NaturalModelBase.pullback
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
:
NaturalModelBase Ctx
Pull a natural model back along a type.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
NaturalModelBase.ofIsPullback
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{U E : CategoryTheory.Psh Ctx}
{π : E ⟶ U}
{toTy : U ⟶ M.Ty}
{toTm : E ⟶ M.Tm}
(pb : CategoryTheory.IsPullback toTm π M.tp toTy)
:
NaturalModelBase Ctx
Given the pullback square on the right,
with a natural model structure on tp : Tm ⟶ Ty
giving the outer pullback square.
Γ.A -.-.- var -.-,-> E ------ toTm ------> Tm | | | | | | M.disp π tp | | | V V V Γ ------- A -------> U ------ toTy ------> Ty
construct a natural model structure on π : E ⟶ U
,
by pullback pasting.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Substitutions #
def
NaturalModelBase.substCons
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(t : CategoryTheory.yoneda.obj Δ ⟶ M.Tm)
(t_tp : CategoryTheory.CategoryStruct.comp t M.tp = CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map σ) A)
:
Δ ⊢ σ : Γ Γ ⊢ A type Δ ⊢ t : A[σ]
-----------------------------------
Δ ⊢ σ.t : Γ.A
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
NaturalModelBase.substCons_disp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(t : CategoryTheory.yoneda.obj Δ ⟶ M.Tm)
(tTp : CategoryTheory.CategoryStruct.comp t M.tp = CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map σ) A)
:
@[simp]
theorem
NaturalModelBase.substCons_disp_assoc
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(t : CategoryTheory.yoneda.obj Δ ⟶ M.Tm)
(tTp : CategoryTheory.CategoryStruct.comp t M.tp = CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map σ) A)
{Z : Ctx}
(h : Γ ⟶ Z)
:
@[simp]
theorem
NaturalModelBase.substCons_var
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(t : CategoryTheory.yoneda.obj Δ ⟶ M.Tm)
(aTp : CategoryTheory.CategoryStruct.comp t M.tp = CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map σ) A)
:
@[simp]
theorem
NaturalModelBase.substCons_var_assoc
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(t : CategoryTheory.yoneda.obj Δ ⟶ M.Tm)
(aTp : CategoryTheory.CategoryStruct.comp t M.tp = CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map σ) A)
{Z : CategoryTheory.Functor Ctxᵒᵖ (Type u)}
(h : M.Tm ⟶ Z)
:
def
NaturalModelBase.substFst
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
{A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty}
(σ : Δ ⟶ M.ext A)
:
Δ ⊢ σ : Γ.A
------------
Δ ⊢ ↑∘σ : Γ
Instances For
def
NaturalModelBase.substSnd
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
{A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty}
(σ : Δ ⟶ M.ext A)
:
Δ ⊢ σ : Γ.A
-------------------
Δ ⊢ v₀[σ] : A[↑∘σ]
Instances For
theorem
NaturalModelBase.substSnd_tp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
{A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty}
(σ : Δ ⟶ M.ext A)
:
def
NaturalModelBase.wk
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{X : CategoryTheory.Psh Ctx}
{Γ : Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(f : CategoryTheory.yoneda.obj Γ ⟶ X)
:
Equations
Instances For
theorem
NaturalModelBase.wk_tp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{N : NaturalModelBase Ctx}
{Γ : Ctx}
{B : CategoryTheory.yoneda.obj Γ ⟶ N.Ty}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(f : CategoryTheory.yoneda.obj Γ ⟶ N.Tm)
(f_tp : CategoryTheory.CategoryStruct.comp f N.tp = B)
:
def
NaturalModelBase.substWk
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
:
Weaken a substitution.
Δ ⊢ σ : Γ Γ ⊢ A type
----------------------------------------
Δ.A[σ] ⊢ ↑≫σ : Γ Δ.A[σ] ⊢ v₀ : A[↑≫σ]
----------------------------------------
Δ.A[σ] ⊢ (↑≫σ).v₀ : Γ.A
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
NaturalModelBase.substWk_disp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
:
@[simp]
theorem
NaturalModelBase.substWk_disp_assoc
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
{Z : Ctx}
(h : Γ ⟶ Z)
:
@[simp]
theorem
NaturalModelBase.substWk_var
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
:
@[simp]
theorem
NaturalModelBase.substWk_var_assoc
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Δ Γ : Ctx}
(σ : Δ ⟶ Γ)
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
{Z : CategoryTheory.Functor Ctxᵒᵖ (Type u)}
(h : M.Tm ⟶ Z)
:
def
NaturalModelBase.inst
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X : CategoryTheory.Psh Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(x : CategoryTheory.yoneda.obj (M.ext A) ⟶ X)
(a : CategoryTheory.yoneda.obj Γ ⟶ M.Tm)
(a_tp : CategoryTheory.CategoryStruct.comp a M.tp = A)
:
Γ ⊢ A type Γ.A ⊢ x ⟶ X Γ ⊢ a : A
-----------------------------------
Γ ⊢ x[id.a] ⟶ X
Equations
Instances For
@[simp]
def
NaturalModelBase.inst_tp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{N : NaturalModelBase Ctx}
{Γ : Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(B : CategoryTheory.yoneda.obj (M.ext A) ⟶ N.Ty)
(t : CategoryTheory.yoneda.obj (M.ext A) ⟶ N.Tm)
(t_tp : CategoryTheory.CategoryStruct.comp t N.tp = B)
(a : CategoryTheory.yoneda.obj Γ ⟶ M.Tm)
(a_tp : CategoryTheory.CategoryStruct.comp a M.tp = A)
:
Instances For
@[simp]
theorem
NaturalModelBase.inst_wk
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X : CategoryTheory.Psh Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(x : CategoryTheory.yoneda.obj Γ ⟶ X)
(a : CategoryTheory.yoneda.obj Γ ⟶ M.Tm)
(a_tp : CategoryTheory.CategoryStruct.comp a M.tp = A)
:
instance
NaturalModelBase.instLCCPsh
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
:
LCC (CategoryTheory.Psh Ctx)
Equations
def
NaturalModelBase.uvPolyTp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
:
Equations
- M.uvPolyTp = { p := M.tp, exp := inferInstance }
Instances For
@[simp]
theorem
NaturalModelBase.uvPolyTp_exp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
:
@[simp]
theorem
NaturalModelBase.uvPolyTp_p
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
:
def
NaturalModelBase.uvPolyTpT
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
:
Instances For
def
NaturalModelBase.Ptp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
:
Instances For
def
NaturalModelBase.Ptp_equiv
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X : CategoryTheory.Psh Ctx}
:
Γ ⊢ A type y(Γ.A) ⟶ X
=======================
yΓ ⟶ P_tp(X)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
NaturalModelBase.Ptp_equiv_naturality_assoc
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X Y : CategoryTheory.Psh Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
(x : CategoryTheory.yoneda.obj (M.ext A) ⟶ X)
(α : X ⟶ Y)
{Z : CategoryTheory.Functor Ctxᵒᵖ (Type u)}
(h : M.Ptp.obj Y ⟶ Z)
:
theorem
NaturalModelBase.Ptp_equiv_symm_naturality
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X Y : CategoryTheory.Psh Ctx}
(x : CategoryTheory.yoneda.obj Γ ⟶ M.Ptp.obj X)
(α : X ⟶ Y)
:
theorem
NaturalModelBase.Ptp_ext
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X : CategoryTheory.Psh Ctx}
{x y : CategoryTheory.yoneda.obj Γ ⟶ M.Ptp.obj X}
: