Documentation

GroupoidModel.Russell_PER_MS.NaturalModelBase

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      structure NaturalModelBase (Ctx : Type u) [CategoryTheory.Category.{u_1, u} Ctx] :
      Type (max u (u_1 + 1))

      A representable map with choice of representability witnesses.

      Instances For

        Pullback of representable natural transformation #

        Pull a natural model back along a type.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def NaturalModelBase.ofIsPullback {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] (M : NaturalModelBase Ctx) {U E : CategoryTheory.Psh Ctx} {π : E U} {toTy : U M.Ty} {toTm : E M.Tm} (pb : CategoryTheory.IsPullback toTm π M.tp toTy) :

          Given the pullback square on the right, with a natural model structure on tp : TmTy giving the outer pullback square.

          Γ.A -.-.- var -.-,-> E ------ toTm ------> Tm | | | | | | M.disp π tp | | | V V V Γ ------- A -------> U ------ toTy ------> Ty

          construct a natural model structure on π : E ⟶ U, by pullback pasting.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Substitutions #

            Δ ⊢ σ : Γ  Γ ⊢ A type  Δ ⊢ t : A[σ]
            -----------------------------------
            Δ ⊢ σ.t : Γ.A
            
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def NaturalModelBase.substFst {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] (M : NaturalModelBase Ctx) {Δ Γ : Ctx} {A : CategoryTheory.yoneda.obj Γ M.Ty} (σ : Δ M.ext A) :
              Δ ⊢ σ : Γ.A
              ------------
              Δ ⊢ ↑∘σ : Γ
              
              Equations
              Instances For
                Δ ⊢ σ : Γ.A
                -------------------
                Δ ⊢ v₀[σ] : A[↑∘σ]
                
                Equations
                Instances For

                  Weaken a substitution.

                  Δ ⊢ σ : Γ  Γ ⊢ A type
                  ----------------------------------------
                  Δ.A[σ] ⊢ ↑≫σ : Γ  Δ.A[σ] ⊢ v₀ : A[↑≫σ]
                  ----------------------------------------
                  Δ.A[σ] ⊢ (↑≫σ).v₀ : Γ.A
                  
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Γ ⊢ A type  Γ.A ⊢ x ⟶ X  Γ ⊢ a : A
                    -----------------------------------
                    Γ ⊢ x[id.a] ⟶ X
                    
                    Equations
                    Instances For
                      @[simp]
                      Equations
                      Instances For
                        @[simp]

                        Polynomial functor on tp #

                        Equations
                        Instances For
                          Equations
                          Instances For
                            Γ ⊢ A type  y(Γ.A) ⟶ X
                            =======================
                            yΓ ⟶ P_tp(X)
                            
                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For