structure
NaturalModelBase.NaturalModelPi
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
:
Type u
Instances For
class
NaturalModelBase.NaturalModelSigma
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
:
Type u
Instances
def
NaturalModelBase.pullbackIsoExt
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ M.Ty)
:
Instances For
def
NaturalModelBase.uvPolyTpEquiv
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X : CategoryTheory.Psh Ctx}
:
This is a specialization of UvPoly.equiv
the universal property of UvPoly
to M.uvPolyTp
.
We use the chosen pullback M.ext A
instead of pullback
from the HasPullback
instance
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
NaturalModelBase.uvPolyTpEquiv_fst
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{X : CategoryTheory.Psh Ctx}
(AB : CategoryTheory.yoneda.obj Γ ⟶ M.uvPolyTp.functor.obj X)
:
def
NaturalModelBase.sec
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
(α : CategoryTheory.yoneda.obj Γ ⟶ M.Tm)
:
sec
is the universal lift in the following diagram,
which is a section of Groupoidal.forget
===== Γ -------α--------------¬ ‖ ↓ sec V ‖ M.ext A ⋯ -------------> M.Tm ‖ | | ‖ | | ‖ forget M.tp ‖ | | ‖ V V ===== Γ ---- α ≫ M.tp -----> M.Ty
Equations
Instances For
@[simp]
theorem
NaturalModelBase.sec_disp
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
(α : CategoryTheory.yoneda.obj Γ ⟶ M.Tm)
:
theorem
NaturalModelBase.lift_ev
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
{Γ : Ctx}
{AB : CategoryTheory.yoneda.obj Γ ⟶ M.uvPolyTp.functor.obj M.Ty}
{α : CategoryTheory.yoneda.obj Γ ⟶ M.Tm}
(hA : CategoryTheory.CategoryStruct.comp AB (M.uvPolyTp.proj M.Ty) = CategoryTheory.CategoryStruct.comp α M.tp)
:
def
NaturalModelBase.uvPolyTpCompDomEquiv
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
(M : NaturalModelBase Ctx)
(Γ : Ctx)
:
(CategoryTheory.yoneda.obj Γ ⟶ M.uvPolyTp.compDom M.uvPolyTp) ≃ (α : CategoryTheory.yoneda.obj Γ ⟶ M.Tm) ×
(B : CategoryTheory.yoneda.obj (M.ext (CategoryTheory.CategoryStruct.comp α M.tp)) ⟶ M.Ty) ×
(β : CategoryTheory.yoneda.obj Γ ⟶ M.Tm) ×'
CategoryTheory.CategoryStruct.comp β M.tp = CategoryTheory.CategoryStruct.comp (M.sec α) B
A specialization of the universal property of UvPoly.compDom
to M.uvPolyTp
,
using the chosen pullback M.ext
instead of pullback
.
Equations
- One or more equations did not get rendered due to their size.