Documentation

Init.Data.UInt.Lemmas

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem UInt8.toNat_sub_of_le (a b : UInt8) :
    @[simp]
    theorem UInt8.toNat_mul (a b : UInt8) :
    theorem UInt8.mod_lt (a : UInt8) {b : UInt8} :
    0 < ba % b < b
    theorem UInt8.toNat_mod_lt {m : Nat} (u : UInt8) :
    m > 0(u % ofNat m).toNat < m
    @[simp]
    theorem UInt8.not_le {a b : UInt8} :
    theorem UInt8.le_antisymm {a b : UInt8} (h₁ : a b) (h₂ : b a) :
    a = b
    theorem UInt8.val_inj {a b : UInt8} :
    @[simp]
    theorem UInt8.ofNat_toNat {x : UInt8} :
    theorem UInt8.one_def :
    1 = { toBitVec := 1 }
    @[simp]
    theorem UInt8.toNat_zero :
    toNat 0 = 0
    theorem UInt8.zero_def :
    0 = { toBitVec := 0 }
    theorem UInt8.toNat.inj {a b : UInt8} :
    a.toNat = b.toNata = b
    @[simp]
    theorem UInt8.toNat_mod (a b : UInt8) :
    theorem UInt8.lt_trans {a b c : UInt8} :
    a < bb < ca < c
    theorem UInt8.mod_def (a b : UInt8) :
    a % b = { toBitVec := a.toBitVec % b.toBitVec }
    @[simp]
    theorem UInt8.le_refl (a : UInt8) :
    theorem UInt8.ne_of_lt {a b : UInt8} (h : a < b) :
    theorem UInt8.mul_def (a b : UInt8) :
    a * b = { toBitVec := a.toBitVec * b.toBitVec }
    theorem UInt8.lt_asymm {a b : UInt8} :
    a < b¬b < a
    @[simp]
    theorem UInt8.toNat_add (a b : UInt8) :
    @[simp]
    theorem UInt8.toNat_ofNatCore {n : Nat} {h : n < size} :
    @[deprecated UInt8.toNat_mod_lt (since := "2024-09-24")]
    theorem UInt8.modn_lt {m : Nat} (u : UInt8) :
    m > 0(u % m).toNat < m
    @[simp]
    theorem UInt8.toNat_div (a b : UInt8) :
    theorem UInt8.eq_of_val_eq {a b : UInt8} (h : a.val = b.val) :
    a = b
    @[simp]
    theorem UInt8.lt_irrefl (a : UInt8) :
    theorem UInt8.sub_def (a b : UInt8) :
    a - b = { toBitVec := a.toBitVec - b.toBitVec }
    theorem UInt8.le_trans {a b c : UInt8} :
    a bb ca c
    theorem UInt8.add_def (a b : UInt8) :
    a + b = { toBitVec := a.toBitVec + b.toBitVec }
    @[simp]
    theorem UInt8.ofNat_one :
    ofNat 1 = 1
    theorem UInt8.toNat_sub (a b : UInt8) :
    (a - b).toNat = (2 ^ 8 - b.toNat + a.toNat) % 2 ^ 8
    @[simp]
    theorem UInt8.toNat_ofNat {n : Nat} :
    @[simp]
    theorem UInt8.not_lt {a b : UInt8} :
    theorem UInt16.toNat_mod_lt {m : Nat} (u : UInt16) :
    m > 0(u % ofNat m).toNat < m
    @[simp]
    theorem UInt16.le_refl (a : UInt16) :
    theorem UInt16.toNat_sub (a b : UInt16) :
    (a - b).toNat = (2 ^ 16 - b.toNat + a.toNat) % 2 ^ 16
    theorem UInt16.mul_def (a b : UInt16) :
    a * b = { toBitVec := a.toBitVec * b.toBitVec }
    @[simp]
    theorem UInt16.sub_def (a b : UInt16) :
    a - b = { toBitVec := a.toBitVec - b.toBitVec }
    @[simp]
    theorem UInt16.le_antisymm {a b : UInt16} (h₁ : a b) (h₂ : b a) :
    a = b
    theorem UInt16.lt_trans {a b c : UInt16} :
    a < bb < ca < c
    @[simp]
    theorem UInt16.lt_irrefl (a : UInt16) :
    theorem UInt16.lt_asymm {a b : UInt16} :
    a < b¬b < a
    theorem UInt16.le_trans {a b c : UInt16} :
    a bb ca c
    theorem UInt16.ne_of_lt {a b : UInt16} (h : a < b) :
    theorem UInt16.mod_lt (a : UInt16) {b : UInt16} :
    0 < ba % b < b
    @[simp]
    theorem UInt16.not_lt {a b : UInt16} :
    theorem UInt16.mod_def (a b : UInt16) :
    a % b = { toBitVec := a.toBitVec % b.toBitVec }
    @[simp]
    @[simp]
    theorem UInt16.toNat_ofNat {n : Nat} :
    theorem UInt16.eq_of_val_eq {a b : UInt16} (h : a.val = b.val) :
    a = b
    @[simp]
    @[simp]
    @[deprecated UInt16.toNat_mod_lt (since := "2024-09-24")]
    theorem UInt16.modn_lt {m : Nat} (u : UInt16) :
    m > 0(u % m).toNat < m
    theorem UInt16.add_def (a b : UInt16) :
    a + b = { toBitVec := a.toBitVec + b.toBitVec }
    @[simp]
    theorem UInt16.ofNat_one :
    ofNat 1 = 1
    theorem UInt16.one_def :
    1 = { toBitVec := 1 }
    @[simp]
    theorem UInt16.toNat_ofNatCore {n : Nat} {h : n < size} :
    theorem UInt16.toNat.inj {a b : UInt16} :
    a.toNat = b.toNata = b
    @[simp]
    theorem UInt16.not_le {a b : UInt16} :
    theorem UInt16.zero_def :
    0 = { toBitVec := 0 }
    @[simp]
    theorem UInt16.toNat_mul (a b : UInt16) :
    @[simp]
    theorem UInt16.toNat_add (a b : UInt16) :
    theorem UInt32.toNat_mod_lt {m : Nat} (u : UInt32) :
    m > 0(u % ofNat m).toNat < m
    @[simp]
    theorem UInt32.ofNat_one :
    ofNat 1 = 1
    @[simp]
    theorem UInt32.one_def :
    1 = { toBitVec := 1 }
    theorem UInt32.lt_asymm {a b : UInt32} :
    a < b¬b < a
    theorem UInt32.le_antisymm {a b : UInt32} (h₁ : a b) (h₂ : b a) :
    a = b
    @[deprecated UInt32.toNat_mod_lt (since := "2024-09-24")]
    theorem UInt32.modn_lt {m : Nat} (u : UInt32) :
    m > 0(u % m).toNat < m
    @[simp]
    theorem UInt32.not_lt {a b : UInt32} :
    @[simp]
    theorem UInt32.toNat_mul (a b : UInt32) :
    @[simp]
    theorem UInt32.toNat_add (a b : UInt32) :
    @[simp]
    @[simp]
    theorem UInt32.lt_irrefl (a : UInt32) :
    theorem UInt32.toNat_sub (a b : UInt32) :
    (a - b).toNat = (2 ^ 32 - b.toNat + a.toNat) % 2 ^ 32
    theorem UInt32.eq_of_val_eq {a b : UInt32} (h : a.val = b.val) :
    a = b
    theorem UInt32.le_trans {a b c : UInt32} :
    a bb ca c
    @[simp]
    theorem UInt32.toNat_ofNat {n : Nat} :
    theorem UInt32.ne_of_lt {a b : UInt32} (h : a < b) :
    theorem UInt32.sub_def (a b : UInt32) :
    a - b = { toBitVec := a.toBitVec - b.toBitVec }
    theorem UInt32.lt_trans {a b c : UInt32} :
    a < bb < ca < c
    @[simp]
    @[simp]
    theorem UInt32.toNat_ofNatCore {n : Nat} {h : n < size} :
    theorem UInt32.mod_lt (a : UInt32) {b : UInt32} :
    0 < ba % b < b
    theorem UInt32.add_def (a b : UInt32) :
    a + b = { toBitVec := a.toBitVec + b.toBitVec }
    @[simp]
    theorem UInt32.zero_def :
    0 = { toBitVec := 0 }
    theorem UInt32.mul_def (a b : UInt32) :
    a * b = { toBitVec := a.toBitVec * b.toBitVec }
    @[simp]
    theorem UInt32.not_le {a b : UInt32} :
    theorem UInt32.mod_def (a b : UInt32) :
    a % b = { toBitVec := a.toBitVec % b.toBitVec }
    @[simp]
    theorem UInt32.le_refl (a : UInt32) :
    theorem UInt32.toNat.inj {a b : UInt32} :
    a.toNat = b.toNata = b
    @[simp]
    @[simp]
    theorem UInt64.lt_asymm {a b : UInt64} :
    a < b¬b < a
    @[simp]
    theorem UInt64.toNat_ofNat {n : Nat} :
    @[simp]
    theorem UInt64.toNat_add (a b : UInt64) :
    @[simp]
    theorem UInt64.le_refl (a : UInt64) :
    theorem UInt64.toNat.inj {a b : UInt64} :
    a.toNat = b.toNata = b
    @[simp]
    theorem UInt64.toNat_ofNatCore {n : Nat} {h : n < size} :
    @[simp]
    theorem UInt64.lt_irrefl (a : UInt64) :
    @[simp]
    @[simp]
    theorem UInt64.ne_of_lt {a b : UInt64} (h : a < b) :
    theorem UInt64.lt_trans {a b c : UInt64} :
    a < bb < ca < c
    theorem UInt64.le_antisymm {a b : UInt64} (h₁ : a b) (h₂ : b a) :
    a = b
    theorem UInt64.toNat_mod_lt {m : Nat} (u : UInt64) :
    m > 0(u % ofNat m).toNat < m
    theorem UInt64.mod_def (a b : UInt64) :
    a % b = { toBitVec := a.toBitVec % b.toBitVec }
    theorem UInt64.le_trans {a b c : UInt64} :
    a bb ca c
    theorem UInt64.mul_def (a b : UInt64) :
    a * b = { toBitVec := a.toBitVec * b.toBitVec }
    theorem UInt64.one_def :
    1 = { toBitVec := 1 }
    theorem UInt64.zero_def :
    0 = { toBitVec := 0 }
    @[deprecated UInt64.toNat_mod_lt (since := "2024-09-24")]
    theorem UInt64.modn_lt {m : Nat} (u : UInt64) :
    m > 0(u % m).toNat < m
    @[simp]
    theorem UInt64.add_def (a b : UInt64) :
    a + b = { toBitVec := a.toBitVec + b.toBitVec }
    theorem UInt64.mod_lt (a : UInt64) {b : UInt64} :
    0 < ba % b < b
    @[simp]
    theorem UInt64.ofNat_one :
    ofNat 1 = 1
    @[simp]
    @[simp]
    theorem UInt64.not_lt {a b : UInt64} :
    theorem UInt64.eq_of_val_eq {a b : UInt64} (h : a.val = b.val) :
    a = b
    theorem UInt64.toNat_sub (a b : UInt64) :
    (a - b).toNat = (2 ^ 64 - b.toNat + a.toNat) % 2 ^ 64
    @[simp]
    theorem UInt64.not_le {a b : UInt64} :
    theorem UInt64.sub_def (a b : UInt64) :
    a - b = { toBitVec := a.toBitVec - b.toBitVec }
    @[simp]
    theorem UInt64.toNat_mul (a b : UInt64) :
    theorem USize.toNat_mod_lt {m : Nat} (u : USize) :
    m > 0(u % ofNat m).toNat < m
    @[simp]
    theorem USize.toNat_mod (a b : USize) :
    @[simp]
    theorem USize.not_lt {a b : USize} :
    @[simp]
    theorem USize.toNat_zero :
    toNat 0 = 0
    theorem USize.ne_of_lt {a b : USize} (h : a < b) :
    theorem USize.zero_def :
    0 = { toBitVec := 0 }
    @[simp]
    theorem USize.le_refl (a : USize) :
    theorem USize.add_def (a b : USize) :
    a + b = { toBitVec := a.toBitVec + b.toBitVec }
    theorem USize.mod_def (a b : USize) :
    a % b = { toBitVec := a.toBitVec % b.toBitVec }
    @[simp]
    theorem USize.not_le {a b : USize} :
    theorem USize.le_antisymm {a b : USize} (h₁ : a b) (h₂ : b a) :
    a = b
    theorem USize.toNat.inj {a b : USize} :
    a.toNat = b.toNata = b
    theorem USize.sub_def (a b : USize) :
    a - b = { toBitVec := a.toBitVec - b.toBitVec }
    @[simp]
    theorem USize.lt_irrefl (a : USize) :
    @[deprecated USize.toNat_mod_lt (since := "2024-09-24")]
    theorem USize.modn_lt {m : Nat} (u : USize) :
    m > 0(u % m).toNat < m
    @[simp]
    theorem USize.ofNat_one :
    ofNat 1 = 1
    theorem USize.val_inj {a b : USize} :
    theorem USize.eq_of_val_eq {a b : USize} (h : a.val = b.val) :
    a = b
    theorem USize.lt_asymm {a b : USize} :
    a < b¬b < a
    theorem USize.mul_def (a b : USize) :
    a * b = { toBitVec := a.toBitVec * b.toBitVec }
    @[simp]
    theorem USize.ofNat_toNat {x : USize} :
    theorem USize.mod_lt (a : USize) {b : USize} :
    0 < ba % b < b
    theorem USize.le_trans {a b c : USize} :
    a bb ca c
    theorem USize.lt_trans {a b c : USize} :
    a < bb < ca < c
    @[simp]
    theorem USize.toNat_ofNatCore {n : Nat} {h : n < size} :
    theorem USize.one_def :
    1 = { toBitVec := 1 }
    @[simp]
    theorem USize.toNat_sub_of_le (a b : USize) :
    @[simp]
    theorem USize.toNat_div (a b : USize) :
    @[simp]
    theorem USize.toNat_ofNat32 {n : Nat} {h : n < 4294967296} :
    theorem USize.toNat_ofNat_of_lt_32 {n : Nat} (h : n < 4294967296) :
    theorem UInt32.toNat_lt_of_lt {n : UInt32} {m : Nat} (h : m < size) :
    n < ofNat mn.toNat < m
    theorem UInt32.lt_toNat_of_lt {n : UInt32} {m : Nat} (h : m < size) :
    ofNat m < nm < n.toNat
    theorem UInt32.toNat_le_of_le {n : UInt32} {m : Nat} (h : m < size) :
    theorem UInt32.le_toNat_of_le {n : UInt32} {m : Nat} (h : m < size) :
    ofNat m nm n.toNat