Documentation

Init.Grind.Norm

Normalization theorems for the grind tactic.

theorem Lean.Grind.iff_eq (p q : Prop) :
(p q) = (p = q)
theorem Lean.Grind.true_imp_eq (p : Prop) :
(Truep) = p
theorem Lean.Grind.not_ite {p : Prop} {x✝ : Decidable p} (q r : Prop) :
(¬if p then q else r) = if p then ¬q else ¬r
theorem Lean.Grind.not_forall {α : Sort u_1} (p : αProp) :
(¬∀ (x : α), p x) = (x : α), ¬p x
theorem Lean.Grind.not_exists {α : Sort u_1} (p : αProp) :
(¬ (x : α), p x) = ∀ (x : α), ¬p x
theorem Lean.Grind.Nat.lt_eq (a b : Nat) :
(a < b) = (a + 1 b)
theorem Lean.Grind.Int.lt_eq (a b : Int) :
(a < b) = (a + 1 b)
theorem Lean.Grind.ge_eq {α : Type u_1} [LE α] (a b : α) :
theorem Lean.Grind.gt_eq {α : Type u_1} [LT α] (a b : α) :
(a > b) = (b < a)
theorem Lean.Grind.beq_eq_decide_eq {α : Type u_1} {x✝ : BEq α} [LawfulBEq α] [DecidableEq α] (a b : α) :
theorem Lean.Grind.bne_eq_decide_not_eq {α : Type u_1} {x✝ : BEq α} [LawfulBEq α] [DecidableEq α] (a b : α) :