Documentation

Mathlib.Algebra.Category.HopfAlgebraCat.Basic

The category of Hopf algebras over a commutative ring #

We introduce the bundled category HopfAlgebraCat of Hopf algebras over a fixed commutative ring R along with the forgetful functor to BialgebraCat.

This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat.

structure HopfAlgebraCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of R-Hopf algebras.

Instances For
    def HopfAlgebraCat.of (R : Type u) [CommRing R] (X : Type v) [Ring X] [HopfAlgebra R X] :

    The object in the category of R-Hopf algebras associated to an R-Hopf algebra.

    Equations
    Instances For
      @[simp]
      theorem HopfAlgebraCat.of_carrier (R : Type u) [CommRing R] (X : Type v) [Ring X] [HopfAlgebra R X] :
      (of R X).carrier = X
      @[simp]
      theorem HopfAlgebraCat.of_instRing (R : Type u) [CommRing R] (X : Type v) [Ring X] [HopfAlgebra R X] :
      (of R X).instRing = inst✝
      @[simp]
      theorem HopfAlgebraCat.of_instHopfAlgebra (R : Type u) [CommRing R] (X : Type v) [Ring X] [HopfAlgebra R X] :
      (of R X).instHopfAlgebra = inst✝
      structure HopfAlgebraCat.Hom {R : Type u} [CommRing R] (V W : HopfAlgebraCat R) :

      A type alias for BialgHom to avoid confusion between the categorical and algebraic spellings of composition.

      Instances For
        theorem HopfAlgebraCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : HopfAlgebraCat R} {x y : V.Hom W} (toBialgHom : x.toBialgHom = y.toBialgHom) :
        x = y
        theorem HopfAlgebraCat.hom_ext {R : Type u} [CommRing R] {X Y : HopfAlgebraCat R} (f g : X Y) (h : f.toBialgHom = g.toBialgHom) :
        f = g
        @[reducible, inline]
        abbrev HopfAlgebraCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [HopfAlgebra R X] [HopfAlgebra R Y] (f : X →ₐc[R] Y) :
        of R X of R Y

        Typecheck a BialgHom as a morphism in HopfAlgebraCat R.

        Equations
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Equations
          • One or more equations did not get rendered due to their size.

          Build an isomorphism in the category HopfAlgebraCat R from a BialgEquiv.

          Equations
          Instances For

            Build a BialgEquiv from an isomorphism in the category HopfAlgebraCat R.

            Equations
            Instances For