Cubics and discriminants #
This file defines cubic polynomials over a semiring and their discriminants over a splitting field.
Main definitions #
Cubic
: the structure representing a cubic polynomial.Cubic.disc
: the discriminant of a cubic polynomial.
Main statements #
Cubic.disc_ne_zero_iff_roots_nodup
: the cubic discriminant is not equal to zero if and only if the cubic has no duplicate roots.
References #
Tags #
cubic, discriminant, polynomial, root
Equations
- Cubic.instZero = { zero := { a := 0, b := 0, c := 0, d := 0 } }
Convert a cubic polynomial to a polynomial.
Equations
Instances For
Coefficients #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Degrees #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Map across a homomorphism #
Roots over an extension #
theorem
Cubic.card_roots_le
{R : Type u_1}
{P : Cubic R}
[CommRing R]
[IsDomain R]
[DecidableEq R]
: