Split polynomials #
A polynomial f : K[X]
splits over a field extension L
of K
if it is zero or all of its
irreducible factors over L
have degree 1
.
Main definitions #
Polynomial.Splits i f
: A predicate on a homomorphismi : K →+* L
from a commutative ring to a field and a polynomialf
saying thatf.map i
is zero or all of its irreducible factors overL
have degree1
.
def
Polynomial.Splits
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
(f : Polynomial K)
:
A polynomial Splits
iff it is zero or all of its irreducible factors have degree
1.
Equations
Instances For
theorem
Polynomial.splits_of_map_degree_eq_one
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hf : (map i f).degree = 1)
:
Splits i f
theorem
Polynomial.splits_of_natDegree_le_one
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hf : f.natDegree ≤ 1)
:
Splits i f
theorem
Polynomial.splits_of_natDegree_eq_one
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hf : f.natDegree = 1)
:
Splits i f
theorem
Polynomial.splits_id_iff_splits
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
:
theorem
Polynomial.splits_iff_comp_splits_of_degree_eq_one
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
{i : K →+* L}
{f p : Polynomial K}
(hd : (map i p).degree = 1)
:
theorem
Polynomial.exists_root_of_splits'
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hs : Splits i f)
(hf0 : (map i f).degree ≠ 0)
:
∃ (x : L), eval₂ i x f = 0
theorem
Polynomial.roots_ne_zero_of_splits'
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hs : Splits i f)
(hf0 : (map i f).natDegree ≠ 0)
:
def
Polynomial.rootOfSplits'
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hf : Splits i f)
(hfd : (map i f).degree ≠ 0)
:
L
Pick a root of a polynomial that splits. See rootOfSplits
for polynomials over a field
which has simpler assumptions.
Instances For
theorem
Polynomial.map_rootOfSplits'
{K : Type v}
{L : Type w}
[CommRing K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hf : Splits i f)
(hfd : (map i f).degree ≠ 0)
:
theorem
Polynomial.splits_iff
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
(f : Polynomial K)
:
This lemma is for polynomials over a field.
theorem
Polynomial.splits_of_splits_gcd_left
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
[DecidableEq K]
{f g : Polynomial K}
(hf0 : f ≠ 0)
(hf : Splits i f)
:
Splits i (EuclideanDomain.gcd f g)
theorem
Polynomial.splits_of_splits_gcd_right
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
[DecidableEq K]
{f g : Polynomial K}
(hg0 : g ≠ 0)
(hg : Splits i g)
:
Splits i (EuclideanDomain.gcd f g)
theorem
Polynomial.degree_eq_one_of_irreducible_of_splits
{K : Type v}
[Field K]
{p : Polynomial K}
(hp : Irreducible p)
(hp_splits : Splits (RingHom.id K) p)
:
theorem
Polynomial.roots_ne_zero_of_splits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hs : Splits i f)
(hf0 : f.natDegree ≠ 0)
:
theorem
Polynomial.rootOfSplits'_eq_rootOfSplits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hf : Splits i f)
(hfd : (map i f).degree ≠ 0)
:
rootOfSplits'
is definitionally equal to rootOfSplits
.
theorem
Polynomial.roots_map
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
(hf : Splits (RingHom.id K) f)
:
theorem
Polynomial.adjoin_rootSet_eq_range
{R : Type u_1}
{K : Type v}
{L : Type w}
[CommRing R]
[Field K]
[Field L]
[Algebra R K]
[Algebra R L]
{p : Polynomial R}
(h : Splits (algebraMap R K) p)
(f : K →ₐ[R] L)
:
theorem
Polynomial.eq_prod_roots_of_splits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
{p : Polynomial K}
{i : K →+* L}
(hsplit : Splits i p)
:
theorem
Polynomial.eq_prod_roots_of_splits_id
{K : Type v}
[Field K]
{p : Polynomial K}
(hsplit : Splits (RingHom.id K) p)
:
theorem
Polynomial.Splits.dvd_of_roots_le_roots
{K : Type v}
[Field K]
{p q : Polynomial K}
(hp : Splits (RingHom.id K) p)
(hp0 : p ≠ 0)
(hq : p.roots ≤ q.roots)
:
theorem
Polynomial.aeval_eq_prod_aroots_sub_of_splits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{p : Polynomial K}
(hsplit : Splits (algebraMap K L) p)
(v : L)
:
theorem
Polynomial.eval_eq_prod_roots_sub_of_splits_id
{K : Type v}
[Field K]
{p : Polynomial K}
(hsplit : Splits (RingHom.id K) p)
(v : K)
:
theorem
Polynomial.eq_prod_roots_of_monic_of_splits_id
{K : Type v}
[Field K]
{p : Polynomial K}
(m : p.Monic)
(hsplit : Splits (RingHom.id K) p)
:
theorem
Polynomial.aeval_eq_prod_aroots_sub_of_monic_of_splits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
{p : Polynomial K}
(m : p.Monic)
(hsplit : Splits (algebraMap K L) p)
(v : L)
:
theorem
Polynomial.eval_eq_prod_roots_sub_of_monic_of_splits_id
{K : Type v}
[Field K]
{p : Polynomial K}
(m : p.Monic)
(hsplit : Splits (RingHom.id K) p)
(v : K)
:
theorem
Polynomial.mem_lift_of_splits_of_roots_mem_range
(R : Type u_1)
{K : Type v}
[CommRing R]
[Field K]
[Algebra R K]
{f : Polynomial K}
(hs : Splits (RingHom.id K) f)
(hm : f.Monic)
(hr : ∀ a ∈ f.roots, a ∈ (algebraMap R K).range)
:
theorem
Polynomial.splits_of_exists_multiset
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
{s : Multiset L}
(hs : map i f = C (i f.leadingCoeff) * (Multiset.map (fun (a : L) => X - C a) s).prod)
:
Splits i f
theorem
Polynomial.splits_of_splits_id
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
:
Splits (RingHom.id K) f → Splits i f
theorem
Polynomial.splits_iff_exists_multiset
{K : Type v}
{L : Type w}
[Field K]
[Field L]
(i : K →+* L)
{f : Polynomial K}
:
Splits i f ↔ ∃ (s : Multiset L), map i f = C (i f.leadingCoeff) * (Multiset.map (fun (a : L) => X - C a) s).prod
theorem
Polynomial.splits_of_algHom
{R : Type u_1}
{K : Type v}
{L : Type w}
[CommRing R]
[Field K]
[Field L]
[Algebra R K]
[Algebra R L]
{f : Polynomial R}
(h : Splits (algebraMap R K) f)
(e : K →ₐ[R] L)
:
Splits (algebraMap R L) f
theorem
Polynomial.splits_of_isScalarTower
{R : Type u_1}
{K : Type v}
(L : Type w)
[CommRing R]
[Field K]
[Field L]
[Algebra R K]
[Algebra R L]
{f : Polynomial R}
[Algebra K L]
[IsScalarTower R K L]
(h : Splits (algebraMap R K) f)
:
Splits (algebraMap R L) f
A polynomial splits if and only if it has as many roots as its degree.
theorem
Polynomial.aeval_root_derivative_of_splits
{K : Type v}
{L : Type w}
[Field K]
[Field L]
[Algebra K L]
[DecidableEq L]
{P : Polynomial K}
(hmo : P.Monic)
(hP : Splits (algebraMap K L) P)
{r : L}
(hr : r ∈ P.aroots L)
:
@[deprecated Polynomial.prod_roots_eq_coeff_zero_of_monic_of_splits (since := "2024-10-01")]
theorem
Polynomial.prod_roots_eq_coeff_zero_of_monic_of_split
{K : Type v}
[Field K]
{P : Polynomial K}
(hmo : P.Monic)
(hP : Splits (RingHom.id K) P)
:
Alias of Polynomial.prod_roots_eq_coeff_zero_of_monic_of_splits
.
If P
is a monic polynomial that splits, then coeff P 0
equals the product of the roots.
theorem
Polynomial.sum_roots_eq_nextCoeff_of_monic_of_split
{K : Type v}
[Field K]
{P : Polynomial K}
(hmo : P.Monic)
(hP : Splits (RingHom.id K) P)
:
If P
is a monic polynomial that splits, then P.nextCoeff
equals the sum of the roots.