Documentation

Mathlib.AlgebraicGeometry.Gluing

Gluing Schemes #

Given a family of gluing data of schemes, we may glue them together.

Main definitions #

Main results #

Implementation details #

All the hard work is done in AlgebraicGeometry/PresheafedSpace/Gluing.lean where we glue presheafed spaces, sheafed spaces, and locally ringed spaces.

A family of gluing data consists of

  1. An index type J
  2. A scheme U i for each i : J.
  3. A scheme V i j for each i j : J. (Note that this is J × J → Scheme rather than J → J → Scheme to connect to the limits library easier.)
  4. An open immersion f i j : V i j ⟶ U i for each i j : ι.
  5. A transition map t i j : V i j ⟶ V j i for each i j : ι. such that
  6. f i i is an isomorphism.
  7. t i i is the identity.
  8. V i j ×[U i] V i k ⟶ V i j ⟶ V j i factors through V j k ×[U j] V j i ⟶ V j i via some t' : V i j ×[U i] V i k ⟶ V j k ×[U j] V j i.
  9. t' i j k ≫ t' j k i ≫ t' k i j = 𝟙 _.

We can then glue the schemes U i together by identifying V i j with V j i, such that the U i's are open subschemes of the glued space.

@[reducible, inline]

The glue data of locally ringed spaces associated to a family of glue data of schemes.

Equations

(Implementation). The glued scheme of a glue data. This should not be used outside this file. Use AlgebraicGeometry.Scheme.GlueData.glued instead.

Equations
@[reducible, inline]

The glued scheme of a glued space.

Equations
  • D.glued = D.glued
@[reducible, inline]

The immersion from D.U i into the glued space.

Equations
  • D i = D i
@[reducible, inline]
abbrev AlgebraicGeometry.Scheme.GlueData.isoLocallyRingedSpace (D : AlgebraicGeometry.Scheme.GlueData) :
D.glued.toLocallyRingedSpace D.toLocallyRingedSpaceGlueData.glued

The gluing as sheafed spaces is isomorphic to the gluing as presheafed spaces.

Equations
theorem AlgebraicGeometry.Scheme.GlueData.ι_jointly_surjective (D : AlgebraicGeometry.Scheme.GlueData) (x : D.glued.toPresheafedSpace) :
∃ (i : D.J) (y : (D.U i).toPresheafedSpace), (D i).base y = x

The pullback cone spanned by V i j ⟶ U i and V i j ⟶ U j. This is a pullback diagram (vPullbackConeIsLimit).

Equations

The following diagram is a pullback, i.e. Vᵢⱼ is the intersection of Uᵢ and Uⱼ in X.

Vᵢⱼ ⟶ Uᵢ | | ↓ ↓ Uⱼ ⟶ X

Equations
def AlgebraicGeometry.Scheme.GlueData.isoCarrier (D : AlgebraicGeometry.Scheme.GlueData) :
D.glued.toPresheafedSpace D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData.glued

The underlying topological space of the glued scheme is isomorphic to the gluing of the underlying spaces

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AlgebraicGeometry.Scheme.GlueData.ι_isoCarrier_inv (D : AlgebraicGeometry.Scheme.GlueData) (i : D.J) :
CategoryTheory.CategoryStruct.comp (D.toLocallyRingedSpaceGlueData.toSheafedSpaceGlueData.toPresheafedSpaceGlueData.toTopGlueData i) D.isoCarrier.inv = (D i).base
def AlgebraicGeometry.Scheme.GlueData.Rel (D : AlgebraicGeometry.Scheme.GlueData) (a : (i : D.J) × (D.U i).toPresheafedSpace) (b : (i : D.J) × (D.U i).toPresheafedSpace) :

An equivalence relation on Σ i, D.U i that holds iff 𝖣 .ι i x = 𝖣 .ι j y. See AlgebraicGeometry.Scheme.GlueData.ι_eq_iff.

Equations
  • One or more equations did not get rendered due to their size.
theorem AlgebraicGeometry.Scheme.GlueData.ι_eq_iff (D : AlgebraicGeometry.Scheme.GlueData) (i : D.J) (j : D.J) (x : (D.U i).toPresheafedSpace) (y : (D.U j).toPresheafedSpace) :
(D i).base x = (D j).base y D.Rel i, x j, y
theorem AlgebraicGeometry.Scheme.GlueData.isOpen_iff (D : AlgebraicGeometry.Scheme.GlueData) (U : Set D.glued.toPresheafedSpace) :
IsOpen U ∀ (i : D.J), IsOpen ((D i).base ⁻¹' U)

The open cover of the glued space given by the glue data.

Equations
  • D.openCover = { J := D.J, obj := D.U, map := D, f := fun (x : D.glued.toPresheafedSpace) => .choose, covers := , IsOpen := }
theorem AlgebraicGeometry.Scheme.GlueData.openCover_f (D : AlgebraicGeometry.Scheme.GlueData) (x : D.glued.toPresheafedSpace) :
D.openCover.f x = .choose
def AlgebraicGeometry.Scheme.OpenCover.gluedCoverT' {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (x : 𝒰.J) (y : 𝒰.J) (z : 𝒰.J) :

(Implementation) the transition maps in the glue data associated with an open cover.

Equations
  • One or more equations did not get rendered due to their size.
theorem AlgebraicGeometry.Scheme.OpenCover.glued_cover_cocycle_fst {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (x : 𝒰.J) (y : 𝒰.J) (z : 𝒰.J) :
CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' x y z) (CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' y z x) (CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' z x y) (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map z))))) = CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map z))
theorem AlgebraicGeometry.Scheme.OpenCover.glued_cover_cocycle_snd {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (x : 𝒰.J) (y : 𝒰.J) (z : 𝒰.J) :
CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' x y z) (CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' y z x) (CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' z x y) (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map z))))) = CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map z))
theorem AlgebraicGeometry.Scheme.OpenCover.glued_cover_cocycle {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (x : 𝒰.J) (y : 𝒰.J) (z : 𝒰.J) :
CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' x y z) (CategoryTheory.CategoryStruct.comp (𝒰.gluedCoverT' y z x) (𝒰.gluedCoverT' z x y)) = CategoryTheory.CategoryStruct.id (CategoryTheory.Limits.pullback (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map z)))

The glue data associated with an open cover. The canonical isomorphism 𝒰.gluedCover.glued ⟶ X is provided by 𝒰.fromGlued.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.gluedCover_U {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) :
∀ (a : 𝒰.J), 𝒰.gluedCover.U a = 𝒰.obj a
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.gluedCover_V {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) :
∀ (x : 𝒰.J × 𝒰.J), 𝒰.gluedCover.V x = match x with | (x, y) => CategoryTheory.Limits.pullback (𝒰.map x) (𝒰.map y)
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.gluedCover_J {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) :
𝒰.gluedCover.J = 𝒰.J
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.gluedCover_t {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) :
∀ (x x_1 : 𝒰.J), 𝒰.gluedCover.t x x_1 = (CategoryTheory.Limits.pullbackSymmetry (𝒰.map x) (𝒰.map x_1)).hom
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.gluedCover_f {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) :
∀ (x x_1 : 𝒰.J), 𝒰.gluedCover.f x x_1 = CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map x_1)
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.gluedCover_t' {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (x : 𝒰.J) (y : 𝒰.J) (z : 𝒰.J) :
𝒰.gluedCover.t' x y z = 𝒰.gluedCoverT' x y z
def AlgebraicGeometry.Scheme.OpenCover.fromGlued {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) :
𝒰.gluedCover.glued X

The canonical morphism from the gluing of an open cover of X into X. This is an isomorphism, as witnessed by an IsIso instance.

Equations
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.ι_fromGlued {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (x : 𝒰.J) :
CategoryTheory.CategoryStruct.comp (𝒰.gluedCover x) 𝒰.fromGlued = 𝒰.map x
instance AlgebraicGeometry.Scheme.OpenCover.fromGlued_stalk_iso {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (x : 𝒰.gluedCover.glued.toPresheafedSpace) :
Equations
  • =
@[deprecated AlgebraicGeometry.Scheme.OpenCover.fromGlued_isOpenEmbedding]

Alias of AlgebraicGeometry.Scheme.OpenCover.fromGlued_isOpenEmbedding.

Equations
  • =
def AlgebraicGeometry.Scheme.OpenCover.glueMorphisms {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f : (x : 𝒰.J) → 𝒰.obj x Y) (hf : ∀ (x y : 𝒰.J), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (f x) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (𝒰.map x) (𝒰.map y)) (f y)) :
X Y

Given an open cover of X, and a morphism 𝒰.obj x ⟶ Y for each open subscheme in the cover, such that these morphisms are compatible in the intersection (pullback), we may glue the morphisms together into a morphism X ⟶ Y.

Note: If X is exactly (defeq to) the gluing of U i, then using Multicoequalizer.desc suffices.

Equations
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.ι_glueMorphisms {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f : (x : 𝒰.J) → 𝒰.obj x Y) (hf : ∀ (x y : 𝒰.J), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (f x) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (𝒰.map x) (𝒰.map y)) (f y)) (x : 𝒰.J) :
CategoryTheory.CategoryStruct.comp (𝒰.map x) (𝒰.glueMorphisms f hf) = f x
theorem AlgebraicGeometry.Scheme.OpenCover.ι_glueMorphisms_assoc {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f : (x : 𝒰.J) → 𝒰.obj x Y) (hf : ∀ (x y : 𝒰.J), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (𝒰.map x) (𝒰.map y)) (f x) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (𝒰.map x) (𝒰.map y)) (f y)) (x : 𝒰.J) {Z : AlgebraicGeometry.Scheme} (h : Y Z) :
theorem AlgebraicGeometry.Scheme.OpenCover.hom_ext {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f₁ : X Y) (f₂ : X Y) (h : ∀ (x : 𝒰.J), CategoryTheory.CategoryStruct.comp (𝒰.map x) f₁ = CategoryTheory.CategoryStruct.comp (𝒰.map x) f₂) :
f₁ = f₂