Documentation

Mathlib.CategoryTheory.Adjunction.Opposites

Opposite adjunctions #

This file contains constructions to relate adjunctions of functors to adjunctions of their opposites.

Tags #

adjunction, opposite, uniqueness

If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
@[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.unop.


If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
@[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.unop.


If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
@[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.unop.


If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
@[deprecated CategoryTheory.Adjunction.unop (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.unop.


If G is adjoint to F then F.unop is adjoint to G.unop.

Equations
def CategoryTheory.Adjunction.op {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} {G : Functor D C} (h : G F) :

If G is adjoint to F then F.op is adjoint to G.op.

Equations
@[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.op.


If G is adjoint to F then F.op is adjoint to G.op.

Equations
@[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.op.


If G is adjoint to F then F.op is adjoint to G.op.

Equations
@[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.op.


If G is adjoint to F then F.op is adjoint to G.op.

Equations
@[deprecated CategoryTheory.Adjunction.op (since := "2025-01-01")]

Alias of CategoryTheory.Adjunction.op.


If G is adjoint to F then F.op is adjoint to G.op.

Equations

If F and F' are both adjoint to G, there is a natural isomorphism F.op ⋙ coyoneda ≅ F'.op ⋙ coyoneda. We use this in combination with fullyFaithfulCancelRight to show left adjoints are unique.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Adjunction.natIsoOfRightAdjointNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G G' : Functor D C} (adj1 : F G) (adj2 : F' G') (r : G G') :

Given two adjunctions, if the right adjoints are naturally isomorphic, then so are the left adjoints.

Note: it is generally better to use Adjunction.natIsoEquiv, see the file Adjunction.Unique. The reason this definition still exists is that apparently CategoryTheory.extendAlongYonedaYoneda uses its definitional properties (TODO: figure out a way to avoid this).

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Adjunction.natIsoOfLeftAdjointNatIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F F' : Functor C D} {G G' : Functor D C} (adj1 : F G) (adj2 : F' G') (l : F F') :

Given two adjunctions, if the left adjoints are naturally isomorphic, then so are the right adjoints.

Note: it is generally better to use Adjunction.natIsoEquiv, see the file Adjunction.Unique.

Equations