Opposite adjunctions #
This file contains constructions to relate adjunctions of functors to adjunctions of their opposites.
Tags #
adjunction, opposite, uniqueness
If G
is adjoint to F
then F.unop
is adjoint to G.unop
.
Equations
- h.unop = { unit := CategoryTheory.NatTrans.unop h.counit, counit := CategoryTheory.NatTrans.unop h.unit, left_triangle_components := ⋯, right_triangle_components := ⋯ }
Alias of CategoryTheory.Adjunction.unop
.
Alias of CategoryTheory.Adjunction.unop
.
Alias of CategoryTheory.Adjunction.unop
.
Alias of CategoryTheory.Adjunction.unop
.
If G
is adjoint to F
then F.op
is adjoint to G.op
.
Equations
- h.op = { unit := CategoryTheory.NatTrans.op h.counit, counit := CategoryTheory.NatTrans.op h.unit, left_triangle_components := ⋯, right_triangle_components := ⋯ }
Alias of CategoryTheory.Adjunction.op
.
Alias of CategoryTheory.Adjunction.op
.
Alias of CategoryTheory.Adjunction.op
.
Alias of CategoryTheory.Adjunction.op
.
If F
and F'
are both adjoint to G
, there is a natural isomorphism
F.op ⋙ coyoneda ≅ F'.op ⋙ coyoneda
.
We use this in combination with fullyFaithfulCancelRight
to show left adjoints are unique.
Equations
- One or more equations did not get rendered due to their size.
Given two adjunctions, if the right adjoints are naturally isomorphic, then so are the left adjoints.
Note: it is generally better to use Adjunction.natIsoEquiv
, see the file Adjunction.Unique
.
The reason this definition still exists is that apparently CategoryTheory.extendAlongYonedaYoneda
uses its definitional properties (TODO: figure out a way to avoid this).
Equations
- One or more equations did not get rendered due to their size.
Given two adjunctions, if the left adjoints are naturally isomorphic, then so are the right adjoints.
Note: it is generally better to use Adjunction.natIsoEquiv
, see the file Adjunction.Unique
.
Equations
- adj1.natIsoOfLeftAdjointNatIso adj2 l = CategoryTheory.NatIso.removeOp (adj2.op.natIsoOfRightAdjointNatIso adj1.op (CategoryTheory.NatIso.op l))