Documentation

Mathlib.CategoryTheory.Sites.ConcreteSheafification

Sheafification #

We construct the sheafification of a presheaf over a site C with values in D whenever D is a concrete category for which the forgetful functor preserves the appropriate (co)limits and reflects isomorphisms.

We generally follow the approach of https://stacks.math.columbia.edu/tag/00W1

def CategoryTheory.Meq {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} (P : Functor Cᵒᵖ D) (S : J.Cover X) :
Type (max 0 u v)

A concrete version of the multiequalizer, to be used below.

Equations
Instances For
    instance CategoryTheory.Meq.instCoeFunForallObjForgetOppositeOpY {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} (P : Functor Cᵒᵖ D) (S : J.Cover X) :
    CoeFun (Meq P S) fun (x : Meq P S) => (I : S.Arrow) → (forget D).obj (P.obj (Opposite.op I.Y))
    Equations
    theorem CategoryTheory.Meq.congr_apply {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} {P : Functor Cᵒᵖ D} {S : J.Cover X} (x : Meq P S) {Y : C} {f g : Y X} (h : f = g) (hf : (↑S).arrows f) :
    x { Y := Y, f := f, hf := hf } = x { Y := Y, f := g, hf := }
    theorem CategoryTheory.Meq.ext {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} {P : Functor Cᵒᵖ D} {S : J.Cover X} (x y : Meq P S) (h : ∀ (I : S.Arrow), x I = y I) :
    x = y
    theorem CategoryTheory.Meq.condition {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} {P : Functor Cᵒᵖ D} {S : J.Cover X} (x : Meq P S) (I : S.Relation) :
    (P.map I.r.g₁.op) (x ((S.index P).fstTo I)) = (P.map I.r.g₂.op) (x ((S.index P).sndTo I))
    def CategoryTheory.Meq.refine {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} {P : Functor Cᵒᵖ D} {S T : J.Cover X} (x : Meq P T) (e : S T) :
    Meq P S

    Refine a term of Meq P T with respect to a refinement S ⟶ T of covers.

    Equations
    • x.refine e = fun (I : S.Arrow) => x { Y := I.Y, f := I.f, hf := },
    Instances For
      @[simp]
      theorem CategoryTheory.Meq.refine_apply {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} {P : Functor Cᵒᵖ D} {S T : J.Cover X} (x : Meq P T) (e : S T) (I : S.Arrow) :
      (x.refine e) I = x { Y := I.Y, f := I.f, hf := }
      def CategoryTheory.Meq.pullback {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {Y X : C} {P : Functor Cᵒᵖ D} {S : J.Cover X} (x : Meq P S) (f : Y X) :
      Meq P ((J.pullback f).obj S)

      Pull back a term of Meq P S with respect to a morphism f : Y ⟶ X in C.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Meq.pullback_apply {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {Y X : C} {P : Functor Cᵒᵖ D} {S : J.Cover X} (x : Meq P S) (f : Y X) (I : ((J.pullback f).obj S).Arrow) :
        (x.pullback f) I = x { Y := I.Y, f := CategoryStruct.comp I.f f, hf := }
        @[simp]
        theorem CategoryTheory.Meq.pullback_refine {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {Y X : C} {P : Functor Cᵒᵖ D} {S T : J.Cover X} (h : S T) (f : Y X) (x : Meq P T) :
        def CategoryTheory.Meq.mk {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} {P : Functor Cᵒᵖ D} (S : J.Cover X) (x : (forget D).obj (P.obj (Opposite.op X))) :
        Meq P S

        Make a term of Meq P S.

        Equations
        Instances For
          theorem CategoryTheory.Meq.mk_apply {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] {X : C} {P : Functor Cᵒᵖ D} (S : J.Cover X) (x : (forget D).obj (P.obj (Opposite.op X))) (I : S.Arrow) :
          (mk S x) I = (P.map I.f.op) x

          The equivalence between the type associated to multiequalizer (S.index P) and Meq P S.

          Equations
          Instances For

            Make a term of (J.plusObj P).obj (op X) from x : Meq P S.

            Equations
            Instances For
              theorem CategoryTheory.GrothendieckTopology.Plus.toPlus_apply {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] [Limits.PreservesLimits (forget D)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] {X : C} {P : Functor Cᵒᵖ D} (S : J.Cover X) (x : Meq P S) (I : S.Arrow) :
              ((J.toPlus P).app (Opposite.op I.Y)) (x I) = ((J.plusObj P).map I.f.op) (mk x)
              theorem CategoryTheory.GrothendieckTopology.Plus.eq_mk_iff_exists {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] [Limits.PreservesLimits (forget D)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] {X : C} {P : Functor Cᵒᵖ D} {S T : J.Cover X} (x : Meq P S) (y : Meq P T) :
              mk x = mk y ∃ (W : J.Cover X) (h1 : W S) (h2 : W T), x.refine h1 = y.refine h2
              theorem CategoryTheory.GrothendieckTopology.Plus.sep {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] [Limits.PreservesLimits (forget D)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] {X : C} (P : Functor Cᵒᵖ D) (S : J.Cover X) (x y : (forget D).obj ((J.plusObj P).obj (Opposite.op X))) (h : ∀ (I : S.Arrow), ((J.plusObj P).map I.f.op) x = ((J.plusObj P).map I.f.op) y) :
              x = y

              P⁺ is always separated.

              theorem CategoryTheory.GrothendieckTopology.Plus.inj_of_sep {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] [Limits.PreservesLimits (forget D)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] (P : Functor Cᵒᵖ D) (hsep : ∀ (X : C) (S : J.Cover X) (x y : (forget D).obj (P.obj (Opposite.op X))), (∀ (I : S.Arrow), (P.map I.f.op) x = (P.map I.f.op) y)x = y) (X : C) :
              def CategoryTheory.GrothendieckTopology.Plus.meqOfSep {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] [Limits.PreservesLimits (forget D)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] (P : Functor Cᵒᵖ D) (hsep : ∀ (X : C) (S : J.Cover X) (x y : (forget D).obj (P.obj (Opposite.op X))), (∀ (I : S.Arrow), (P.map I.f.op) x = (P.map I.f.op) y)x = y) (X : C) (S : J.Cover X) (s : Meq (J.plusObj P) S) (T : (I : S.Arrow) → J.Cover I.Y) (t : (I : S.Arrow) → Meq P (T I)) (ht : ∀ (I : S.Arrow), s I = mk (t I)) :
              Meq P (S.bind T)

              An auxiliary definition to be used in the proof of exists_of_sep below. Given a compatible family of local sections for P⁺, and representatives of said sections, construct a compatible family of local sections of P over the combination of the covers associated to the representatives. The separatedness condition is used to prove compatibility among these local sections of P.

              Equations
              Instances For
                theorem CategoryTheory.GrothendieckTopology.Plus.exists_of_sep {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] [Limits.PreservesLimits (forget D)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] (P : Functor Cᵒᵖ D) (hsep : ∀ (X : C) (S : J.Cover X) (x y : (forget D).obj (P.obj (Opposite.op X))), (∀ (I : S.Arrow), (P.map I.f.op) x = (P.map I.f.op) y)x = y) (X : C) (S : J.Cover X) (s : Meq (J.plusObj P) S) :
                ∃ (t : (forget D).obj ((J.plusObj P).obj (Opposite.op X))), Meq.mk S t = s
                theorem CategoryTheory.GrothendieckTopology.Plus.isSheaf_of_sep {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [HasForget D] [Limits.PreservesLimits (forget D)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [(forget D).ReflectsIsomorphisms] (P : Functor Cᵒᵖ D) (hsep : ∀ (X : C) (S : J.Cover X) (x y : (forget D).obj (P.obj (Opposite.op X))), (∀ (I : S.Arrow), (P.map I.f.op) x = (P.map I.f.op) y)x = y) :

                If P is separated, then P⁺ is a sheaf.

                The sheafification of a presheaf P. NOTE: Additional hypotheses are needed to obtain a proof that this is a sheaf!

                Equations
                Instances For

                  The canonical map from P to its sheafification.

                  Equations
                  Instances For

                    The canonical map on sheafifications induced by a morphism.

                    Equations
                    Instances For

                      The sheafification of a presheaf P, as a functor. NOTE: Additional hypotheses are needed to obtain a proof that this is a sheaf!

                      Equations
                      Instances For

                        The canonical map from P to its sheafification, as a natural transformation. Note: We only show this is a sheaf under additional hypotheses on D.

                        Equations
                        Instances For

                          If P is a sheaf, then P is isomorphic to J.sheafify P.

                          Equations
                          Instances For

                            Given a sheaf Q and a morphism P ⟶ Q, construct a morphism from J.sheafify P to Q.

                            Equations
                            Instances For

                              The sheafification functor, as a functor taking values in Sheaf.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                The sheafification functor is left adjoint to the forgetful functor.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For