Documentation

Mathlib.Combinatorics.SimpleGraph.Sum

Disjoint sum of graphs #

This file defines the disjoint sum of graphs. The disjoint sum of G : SimpleGraph α and H : SimpleGraph β is a graph on α ⊕ β where u and v are adjacent if and only if they are both in G and adjacent in G, or they are both in H and adjacent in H.

Main declarations #

Notation #

def SimpleGraph.sum {α : Type u_1} {β : Type u_2} (G : SimpleGraph α) (H : SimpleGraph β) :

Disjoint sum of G and H.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem SimpleGraph.sum_adj {α : Type u_1} {β : Type u_2} (G : SimpleGraph α) (H : SimpleGraph β) (u : α β) (v : α β) :
    (G ⊕g H).Adj u v = match u, v with | Sum.inl u, Sum.inl v => G.Adj u v | Sum.inr u, Sum.inr v => H.Adj u v | x, x_1 => False

    Disjoint sum of G and H.

    Equations
    Instances For
      def SimpleGraph.Iso.sumComm {α : Type u_1} {β : Type u_2} {G : SimpleGraph α} {H : SimpleGraph β} :
      G ⊕g H ≃g H ⊕g G

      The disjoint sum is commutative up to isomorphism. Iso.sumComm as a graph isomorphism.

      Equations
      • SimpleGraph.Iso.sumComm = { toEquiv := Equiv.sumComm α β, map_rel_iff' := }
      Instances For
        @[simp]
        theorem SimpleGraph.Iso.sumComm_apply {α : Type u_1} {β : Type u_2} {G : SimpleGraph α} {H : SimpleGraph β} :
        ∀ (a : α β), SimpleGraph.Iso.sumComm a = a.swap
        @[simp]
        theorem SimpleGraph.Iso.sumComm_symm_apply {α : Type u_1} {β : Type u_2} {G : SimpleGraph α} {H : SimpleGraph β} :
        ∀ (a : β α), (RelIso.symm SimpleGraph.Iso.sumComm) a = a.swap
        def SimpleGraph.Iso.sumAssoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} {G : SimpleGraph α} {H : SimpleGraph β} {I : SimpleGraph γ} :
        G ⊕g H ⊕g I ≃g G ⊕g (H ⊕g I)

        The disjoint sum is associative up to isomorphism. Iso.sumAssoc as a graph isomorphism.

        Equations
        • SimpleGraph.Iso.sumAssoc = { toEquiv := Equiv.sumAssoc α β γ, map_rel_iff' := }
        Instances For
          @[simp]
          theorem SimpleGraph.Iso.sumAssoc_symm_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} {G : SimpleGraph α} {H : SimpleGraph β} {I : SimpleGraph γ} :
          ∀ (a : α β γ), (RelIso.symm SimpleGraph.Iso.sumAssoc) a = Sum.elim (Sum.inl Sum.inl) (Sum.elim (Sum.inl Sum.inr) Sum.inr) a
          @[simp]
          theorem SimpleGraph.Iso.sumAssoc_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} {G : SimpleGraph α} {H : SimpleGraph β} {I : SimpleGraph γ} :
          ∀ (a : (α β) γ), SimpleGraph.Iso.sumAssoc a = Sum.elim (Sum.elim Sum.inl (Sum.inr Sum.inl)) (Sum.inr Sum.inr) a
          def SimpleGraph.Embedding.sumInl {α : Type u_1} {β : Type u_2} {G : SimpleGraph α} {H : SimpleGraph β} :
          G ↪g G ⊕g H

          The embedding of G into G ⊕g H.

          Equations
          • SimpleGraph.Embedding.sumInl = { toFun := fun (u : α) => Sum.inl u, inj' := , map_rel_iff' := }
          Instances For
            @[simp]
            theorem SimpleGraph.Embedding.sumInl_apply {α : Type u_1} {β : Type u_2} {G : SimpleGraph α} {H : SimpleGraph β} (u : α) :
            SimpleGraph.Embedding.sumInl u = Sum.inl u
            def SimpleGraph.Embedding.sumInr {α : Type u_1} {β : Type u_2} {G : SimpleGraph α} {H : SimpleGraph β} :
            H ↪g G ⊕g H

            The embedding of H into G ⊕g H.

            Equations
            • SimpleGraph.Embedding.sumInr = { toFun := fun (u : β) => Sum.inr u, inj' := , map_rel_iff' := }
            Instances For
              @[simp]
              theorem SimpleGraph.Embedding.sumInr_apply {α : Type u_1} {β : Type u_2} {G : SimpleGraph α} {H : SimpleGraph β} (u : β) :
              SimpleGraph.Embedding.sumInr u = Sum.inr u