Documentation

Mathlib.Data.Int.Lemmas

Miscellaneous lemmas about the integers #

This file contains lemmas about integers, which require further imports than Data.Int.Basic or Data.Int.Order.

theorem Int.le_natCast_sub (m n : ) :
m - n (m - n)

succ and pred #

natAbs #

theorem Int.natAbs_inj_of_nonpos_of_nonneg {a b : } (ha : a 0) (hb : 0 b) :
theorem Int.natAbs_coe_sub_coe_le_of_le {a b n : } (a_le_n : a n) (b_le_n : b n) :

A specialization of abs_sub_le_of_nonneg_of_le for working with the signed subtraction of natural numbers.

theorem Int.natAbs_coe_sub_coe_lt_of_lt {a b n : } (a_lt_n : a < n) (b_lt_n : b < n) :
(a - b).natAbs < n

A specialization of abs_sub_lt_of_nonneg_of_lt for working with the signed subtraction of natural numbers.

toNat #

bitwise ops #

This lemma is orphaned from Data.Int.Bitwise as it also requires material from Data.Int.Order.

@[simp]
theorem Int.div2_bit (b : Bool) (n : ) :
(bit b n).div2 = n
theorem Int.ediv_emod_unique' {a b r q : } (h : b 0) :
a / b = q a % b = r r + b * q = a 0 r r < |b|

Like Int.ediv_emod_unique, but permitting negative b.