Documentation

Mathlib.Data.Nat.Defs

Basic operations on the natural numbers #

This file contains:

See note [foundational algebra order theory].

TODO #

Split this file into:

succ, pred #

theorem Nat.succ_pos' {n : } :
theorem Nat.succ_inj {a b : } :

Alias of Nat.succ_inj'.

theorem LT.lt.nat_succ_le {n m : } (h : n < m) :

Alias of Nat.succ_le_of_lt.

theorem Nat.succ_le_iff {m n : } :
theorem Nat.of_le_succ {m n : } :

Alias of the forward direction of Nat.le_succ_iff.

theorem Nat.lt_iff_le_pred {m n : } :
0 < n(m < n m n - 1)
theorem Nat.le_of_pred_lt {n : } {m : } :
m.pred < nm n
theorem Nat.lt_iff_add_one_le {m n : } :
m < n m + 1 n
theorem Nat.one_add_le_iff {m n : } :
1 + m n m < n
theorem Nat.one_le_of_lt {a b : } (h : a < b) :
theorem Nat.min_left_comm (a b c : ) :
min a (min b c) = min b (min a c)
theorem Nat.max_left_comm (a b c : ) :
max a (max b c) = max b (max a c)
theorem Nat.min_right_comm (a b c : ) :
min (min a b) c = min (min a c) b
theorem Nat.max_right_comm (a b c : ) :
max (max a b) c = max (max a c) b
@[simp]
theorem Nat.min_eq_zero_iff {m n : } :
min m n = 0 m = 0 n = 0
@[simp]
theorem Nat.max_eq_zero_iff {m n : } :
max m n = 0 m = 0 n = 0
theorem Nat.pred_one_add (n : ) :
(1 + n).pred = n
theorem Nat.pred_eq_of_eq_succ {m n : } (H : m = n.succ) :
@[simp]
theorem Nat.pred_eq_succ_iff {m n : } :
n - 1 = m + 1 n = m + 2
theorem Nat.forall_lt_succ {n : } {p : Prop} :
(∀ (m : ), m < n + 1p m) (∀ (m : ), m < np m) p n
theorem Nat.exists_lt_succ {n : } {p : Prop} :
( (m : ), m < n + 1 p m) ( (m : ), m < n p m) p n
theorem Nat.two_lt_of_ne {n : } :
n 0n 1n 22 < n

pred #

@[simp]
theorem Nat.add_succ_sub_one (m n : ) :
m + n.succ - 1 = m + n
@[simp]
theorem Nat.succ_add_sub_one (n m : ) :
m.succ + n - 1 = m + n
theorem Nat.pred_sub (n m : ) :
theorem Nat.self_add_sub_one (n : ) :
n + (n - 1) = 2 * n - 1
theorem Nat.sub_one_add_self (n : ) :
n - 1 + n = 2 * n - 1
theorem Nat.lt_of_lt_pred {m n : } (h : m < n - 1) :
m < n
theorem Nat.le_add_pred_of_pos {b : } (a : ) (hb : b 0) :

add #

@[simp]
theorem Nat.add_left_inj {m k n : } :
m + n = k + n m = k

Alias of Nat.add_right_cancel_iff.

@[simp]
theorem Nat.add_right_inj {m k n : } :
n + m = n + k m = k

Alias of Nat.add_left_cancel_iff.

@[simp]
theorem Nat.add_eq_left {a b : } :
a + b = a b = 0
@[simp]
theorem Nat.add_eq_right {a b : } :
a + b = b a = 0
theorem Nat.add_eq_max_iff {m n : } :
m + n = max m n m = 0 n = 0
theorem Nat.add_eq_min_iff {m n : } :
m + n = min m n m = 0 n = 0
@[simp]
theorem Nat.add_eq_zero {m n : } :
m + n = 0 m = 0 n = 0
theorem Nat.add_eq_one_iff {m n : } :
m + n = 1 m = 0 n = 1 m = 1 n = 0
theorem Nat.add_eq_two_iff {m n : } :
m + n = 2 m = 0 n = 2 m = 1 n = 1 m = 2 n = 0
theorem Nat.add_eq_three_iff {m n : } :
m + n = 3 m = 0 n = 3 m = 1 n = 2 m = 2 n = 1 m = 3 n = 0
theorem Nat.add_succ_lt_add {a b c d : } (hab : a < b) (hcd : c < d) :
a + c + 1 < b + d
theorem Nat.le_or_le_of_add_eq_add_pred {a b c d : } (h : a + c = b + d - 1) :

sub #

theorem Nat.sub_succ' (m n : ) :
m - n.succ = m - n - 1

A version of Nat.sub_succ in the form _ - 1 instead of Nat.pred _.

theorem Nat.sub_eq_of_eq_add' {a b c : } (h : a = b + c) :
a - b = c
theorem Nat.eq_sub_of_add_eq {a b c : } (h : c + b = a) :
theorem Nat.eq_sub_of_add_eq' {a b c : } (h : b + c = a) :
theorem Nat.lt_sub_iff_add_lt {a b c : } :
a < c - b a + b < c
theorem Nat.lt_sub_iff_add_lt' {a b c : } :
a < c - b b + a < c
theorem Nat.sub_lt_iff_lt_add {a b c : } (hba : b a) :
a - b < c a < b + c
theorem Nat.sub_lt_iff_lt_add' {a b c : } (hba : b a) :
a - b < c a < c + b
theorem Nat.sub_sub_sub_cancel_right {a b c : } (h : c b) :
a - c - (b - c) = a - b
theorem Nat.add_sub_sub_cancel {a b c : } (h : c a) :
a + b - (a - c) = b + c
theorem Nat.sub_add_sub_cancel {a b c : } (hab : b a) (hcb : c b) :
a - b + (b - c) = a - c
theorem Nat.sub_lt_sub_iff_right {a b c : } (h : c a) :
a - c < b - c a < b

mul #

@[simp]
theorem Nat.mul_def {m n : } :
m.mul n = m * n
theorem Nat.zero_eq_mul {m n : } :
theorem Nat.mul_left_inj {a b c : } (ha : a 0) :
b * a = c * a b = c
theorem Nat.mul_right_inj {a b c : } (ha : a 0) :
a * b = a * c b = c
theorem Nat.mul_ne_mul_left {a b c : } (ha : a 0) :
theorem Nat.mul_ne_mul_right {a b c : } (ha : a 0) :
theorem Nat.mul_eq_left {a b : } (ha : a 0) :
a * b = a b = 1
theorem Nat.mul_eq_right {a b : } (hb : b 0) :
a * b = b a = 1
theorem Nat.mul_right_eq_self_iff {a b : } (ha : 0 < a) :
a * b = a b = 1
theorem Nat.mul_left_eq_self_iff {a b : } (hb : 0 < b) :
a * b = b a = 1
theorem Nat.le_of_mul_le_mul_right {a b c : } (h : a * c b * c) (hc : 0 < c) :
theorem Nat.mul_sub (n m k : ) :
n * (m - k) = n * m - n * k

Alias of Nat.mul_sub_left_distrib.

theorem Nat.sub_mul (n m k : ) :
(n - m) * k = n * k - m * k

Alias of Nat.mul_sub_right_distrib.

theorem Nat.one_lt_mul_iff {m n : } :

The product of two natural numbers is greater than 1 if and only if at least one of them is greater than 1 and both are positive.

theorem Nat.eq_one_of_mul_eq_one_right {m n : } (H : m * n = 1) :
m = 1
theorem Nat.eq_one_of_mul_eq_one_left {m n : } (H : m * n = 1) :
n = 1
@[simp]
theorem Nat.lt_mul_iff_one_lt_left {a b : } (hb : 0 < b) :
@[simp]
theorem Nat.lt_mul_iff_one_lt_right {a b : } (ha : 0 < a) :
theorem Nat.eq_zero_of_double_le {n : } (h : 2 * n n) :
n = 0
theorem Nat.eq_zero_of_mul_le {m n : } (hb : 2 n) (h : n * m m) :
m = 0
theorem Nat.succ_mul_pos {n : } (m : ) (hn : 0 < n) :
theorem Nat.mul_self_le_mul_self {m n : } (h : m n) :
m * m n * n
theorem Nat.mul_lt_mul'' {a b c d : } (hac : a < c) (hbd : b < d) :
a * b < c * d
theorem Nat.mul_self_lt_mul_self {m n : } (h : m < n) :
m * m < n * n
theorem Nat.mul_self_inj {m n : } :
m * m = n * n m = n
@[simp]
theorem Nat.lt_mul_self_iff {n : } :
theorem Nat.add_sub_one_le_mul {a b : } (ha : a 0) (hb : b 0) :
a + b - 1 a * b
theorem Nat.add_le_mul {a : } (ha : 2 a) {b : } :
2 ba + b a * b

div #

theorem Nat.div_le_iff_le_mul_add_pred {a b c : } (hb : 0 < b) :
a / b c a b * c + (b - 1)
theorem Nat.div_lt_self' (a b : ) :
(a + 1) / (b + 2) < a + 1

A version of Nat.div_lt_self using successors, rather than additional hypotheses.

@[deprecated Nat.le_div_iff_mul_le (since := "2024-11-06")]
theorem Nat.le_div_iff_mul_le' {a b c : } (hb : 0 < b) :
@[deprecated Nat.div_lt_iff_lt_mul (since := "2024-11-06")]
theorem Nat.div_lt_iff_lt_mul' {a b c : } (hb : 0 < b) :
a / b < c a < c * b
theorem Nat.one_le_div_iff {a b : } (hb : 0 < b) :
theorem Nat.div_lt_one_iff {a b : } (hb : 0 < b) :
a / b < 1 a < b
theorem Nat.div_le_div_right {a b c : } (h : a b) :
a / c b / c
theorem Nat.lt_of_div_lt_div {a b c : } (h : a / c < b / c) :
a < b
@[simp]
theorem Nat.div_eq_zero_iff {a b : } :
a / b = 0 b = 0 a < b
@[simp]
theorem Nat.div_pos_iff {a b : } :
theorem Nat.lt_mul_of_div_lt {a b c : } (h : a / c < b) (hc : 0 < c) :
theorem Nat.eq_mul_of_div_eq_left {a b c : } (H1 : b a) (H2 : a / b = c) :
theorem Nat.mul_div_cancel_left' {a b : } (Hd : a b) :
a * (b / a) = b
theorem Nat.lt_div_mul_add {a b : } (hb : 0 < b) :
a < a / b * b + b
@[simp]
theorem Nat.div_left_inj {a b d : } (hda : d a) (hdb : d b) :
a / d = b / d a = b
theorem Nat.div_mul_div_comm {a b c d : } :
b ad ca / b * (c / d) = a * c / (b * d)
theorem Nat.mul_div_mul_comm {a b c d : } (hba : b a) (hdc : d c) :
a * c / (b * d) = a / b * (c / d)
theorem Nat.eq_zero_of_le_div {m n : } (hn : 2 n) (h : m m / n) :
m = 0
theorem Nat.div_mul_div_le_div (a b c : ) :
a / c * b / a b / c
theorem Nat.eq_zero_of_le_half {n : } (h : n n / 2) :
n = 0
theorem Nat.le_half_of_half_lt_sub {a b : } (h : a / 2 < a - b) :
theorem Nat.half_le_of_sub_le_half {a b : } (h : a - b a / 2) :
a / 2 b
theorem Nat.div_le_of_le_mul' {m n k : } (h : m k * n) :
m / k n
theorem Nat.div_le_div_of_mul_le_mul {a b c d : } (hd : d 0) (hdc : d c) (h : a * d c * b) :
a / b c / d
theorem Nat.div_le_self' (m n : ) :
m / n m
theorem Nat.two_mul_odd_div_two {n : } (hn : n % 2 = 1) :
2 * (n / 2) = n - 1
theorem Nat.div_eq_self {m n : } :
m / n = m m = 0 n = 1
theorem Nat.div_eq_sub_mod_div {m n : } :
m / n = (m - m % n) / n
theorem Nat.eq_div_of_mul_eq_left {a b c : } (hc : c 0) (h : a * c = b) :
theorem Nat.eq_div_of_mul_eq_right {a b c : } (hc : c 0) (h : c * a = b) :
theorem Nat.mul_le_of_le_div (k x y : ) (h : x y / k) :
x * k y
theorem Nat.div_mul_div_le (a b c d : ) :
a / b * (c / d) a * c / (b * d)

pow #

TODO #

theorem Nat.pow_lt_pow_left {a b : } (h : a < b) {n : } :
n 0a ^ n < b ^ n
theorem Nat.pow_lt_pow_right {a m n : } (ha : 1 < a) (h : m < n) :
a ^ m < a ^ n
theorem Nat.pow_le_pow_iff_left {a b n : } (hn : n 0) :
theorem Nat.pow_lt_pow_iff_left {a b n : } (hn : n 0) :
a ^ n < b ^ n a < b
theorem Nat.pow_left_injective {n : } (hn : n 0) :
Function.Injective fun (a : ) => a ^ n
theorem Nat.pow_right_injective {a : } (ha : 2 a) :
Function.Injective fun (x : ) => a ^ x
@[simp]
theorem Nat.pow_eq_zero {a n : } :
a ^ n = 0 a = 0 n 0
theorem Nat.pow_eq_self_iff {a b : } (ha : 1 < a) :
a ^ b = a b = 1

For a > 1, a ^ b = a iff b = 1.

theorem Nat.le_self_pow {n : } (hn : n 0) (a : ) :
theorem Nat.one_le_pow (n m : ) (h : 0 < m) :
theorem Nat.one_le_pow' (n m : ) :
1 (m + 1) ^ n
theorem Nat.one_lt_pow {a n : } (hn : n 0) (ha : 1 < a) :
theorem Nat.two_pow_succ (n : ) :
2 ^ (n + 1) = 2 ^ n + 2 ^ n
theorem Nat.one_lt_pow' (n m : ) :
1 < (m + 2) ^ (n + 1)
@[simp]
theorem Nat.one_lt_pow_iff {n : } (hn : n 0) {a : } :
theorem Nat.mul_lt_mul_pow_succ {a b n : } (ha : 0 < a) (hb : 1 < b) :
theorem Nat.sq_sub_sq (a b : ) :
a ^ 2 - b ^ 2 = (a + b) * (a - b)
theorem Nat.pow_two_sub_pow_two (a b : ) :
a ^ 2 - b ^ 2 = (a + b) * (a - b)

Alias of Nat.sq_sub_sq.

theorem Nat.div_pow {a b c : } (h : a b) :
(b / a) ^ c = b ^ c / a ^ c
theorem Nat.pow_pos_iff {a n : } :

Recursion and induction principles #

This section is here due to dependencies -- the lemmas here require some of the lemmas proved above, and some of the results in later sections depend on the definitions in this section.

@[simp]
theorem Nat.rec_zero {C : Sort u_1} (h0 : C 0) (h : (n : ) → C nC (n + 1)) :
rec h0 h 0 = h0
theorem Nat.rec_add_one {C : Sort u_1} (h0 : C 0) (h : (n : ) → C nC (n + 1)) (n : ) :
rec h0 h (n + 1) = h n (rec h0 h n)
@[simp]
theorem Nat.rec_one {C : Sort u_1} (h0 : C 0) (h : (n : ) → C nC (n + 1)) :
rec h0 h 1 = h 0 h0
def Nat.leRec {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) {m : } (h : n m) :
motive m h

Recursion starting at a non-zero number: given a map C k → C (k+1) for each k ≥ n, there is a map from C n to each C m, n ≤ m.

This is a version of Nat.le.rec that works for Sort u. Similarly to Nat.le.rec, it can be used as

induction hle using Nat.leRec with
| refl => sorry
| le_succ_of_le hle ih => sorry
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Nat.leRec_self {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) :
    leRec refl le_succ_of_le = refl
    @[simp]
    theorem Nat.leRec_succ {m n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) (h1 : n m) {h2 : n m + 1} :
    leRec refl le_succ_of_le h2 = le_succ_of_le h1 (leRec refl le_succ_of_le h1)
    theorem Nat.leRec_succ' {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) :
    leRec refl le_succ_of_le = le_succ_of_le refl
    theorem Nat.leRec_trans {n m k : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) (hnm : n m) (hmk : m k) :
    leRec refl le_succ_of_le = leRec (leRec refl (fun (x : ) (h : n x) => le_succ_of_le h) hnm) (fun (x : ) (h : m x) => le_succ_of_le ) hmk
    theorem Nat.leRec_succ_left {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) {m : } (h1 : n m) (h2 : n + 1 m) :
    leRec (le_succ_of_le refl) (fun (x : ) (h : n + 1 x) (ih : motive x ) => le_succ_of_le ih) h2 = leRec refl le_succ_of_le h1
    def Nat.leRecOn {C : Sort u_1} {n m : } :
    n m({k : } → C kC (k + 1))C nC m

    Recursion starting at a non-zero number: given a map C k → C (k + 1) for each k, there is a map from C n to each C m, n ≤ m. For a version where the assumption is only made when k ≥ n, see Nat.leRec.

    Equations
    Instances For
      theorem Nat.leRecOn_self {C : Sort u_1} {n : } {next : {k : } → C kC (k + 1)} (x : C n) :
      leRecOn (fun {k : } => next) x = x
      theorem Nat.leRecOn_succ {C : Sort u_1} {n m : } (h1 : n m) {h2 : n m + 1} {next : {k : } → C kC (k + 1)} (x : C n) :
      leRecOn h2 next x = next (leRecOn h1 (fun {k : } => next) x)
      theorem Nat.leRecOn_succ' {C : Sort u_1} {n : } {h : n n + 1} {next : {k : } → C kC (k + 1)} (x : C n) :
      leRecOn h (fun {k : } => next) x = next x
      theorem Nat.leRecOn_trans {C : Sort u_1} {n m k : } (hnm : n m) (hmk : m k) {next : {k : } → C kC (k + 1)} (x : C n) :
      leRecOn next x = leRecOn hmk next (leRecOn hnm next x)
      theorem Nat.leRecOn_succ_left {C : Sort u_1} {n m : } {next : {k : } → C kC (k + 1)} (x : C n) (h1 : n m) (h2 : n + 1 m) :
      leRecOn h2 (fun {k : } => next) (next x) = leRecOn h1 (fun {k : } => next) x
      theorem Nat.leRecOn_injective {C : Sort u_1} {n m : } (hnm : n m) (next : {k : } → C kC (k + 1)) (Hnext : ∀ (n : ), Function.Injective next) :
      Function.Injective (leRecOn hnm fun {k : } => next)
      theorem Nat.leRecOn_surjective {C : Sort u_1} {n m : } (hnm : n m) (next : {k : } → C kC (k + 1)) (Hnext : ∀ (n : ), Function.Surjective next) :
      Function.Surjective (leRecOn hnm fun {k : } => next)
      @[irreducible]
      def Nat.strongRec' {p : Sort u_1} (H : (n : ) → ((m : ) → m < np m)p n) (n : ) :
      p n

      Recursion principle based on <.

      Equations
      Instances For
        def Nat.strongRecOn' {P : Sort u_1} (n : ) (h : (n : ) → ((m : ) → m < nP m)P n) :
        P n

        Recursion principle based on < applied to some natural number.

        Equations
        Instances For
          theorem Nat.strongRecOn'_beta {n : } {P : Sort u_1} {h : (n : ) → ((m : ) → m < nP m)P n} :
          n.strongRecOn' h = h n fun (m : ) (x : m < n) => m.strongRecOn' h
          theorem Nat.le_induction {m : } {P : (n : ) → m nProp} (base : P m ) (succ : ∀ (n : ) (hmn : m n), P n hmnP (n + 1) ) (n : ) (hmn : m n) :
          P n hmn

          Induction principle starting at a non-zero number. To use in an induction proof, the syntax is induction n, hn using Nat.le_induction (or the same for induction').

          This is an alias of Nat.leRec, specialized to Prop.

          def Nat.twoStepInduction {P : Sort u_1} (zero : P 0) (one : P 1) (more : (n : ) → P nP (n + 1)P (n + 2)) (a : ) :
          P a

          Induction principle deriving the next case from the two previous ones.

          Equations
          Instances For
            theorem Nat.strong_induction_on {p : Prop} (n : ) (h : ∀ (n : ), (∀ (m : ), m < np m)p n) :
            p n
            theorem Nat.case_strong_induction_on {p : Prop} (a : ) (hz : p 0) (hi : ∀ (n : ), (∀ (m : ), m np m)p (n + 1)) :
            p a
            def Nat.decreasingInduction {n : } {motive : (m : ) → m nSort u_1} (of_succ : (k : ) → (h : k < n) → motive (k + 1) hmotive k ) (self : motive n ) {m : } (mn : m n) :
            motive m mn

            Decreasing induction: if P (k+1) implies P k for all k < n, then P n implies P m for all m ≤ n. Also works for functions to Sort*.

            For a version also assuming m ≤ k, see Nat.decreasingInduction'.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem Nat.decreasingInduction_self {n : } {motive : (m : ) → m nSort u_1} (of_succ : (k : ) → (h : k < n) → motive (k + 1) hmotive k ) (self : motive n ) :
              decreasingInduction of_succ self = self
              theorem Nat.decreasingInduction_succ {m n : } {motive : (m : ) → m n + 1Sort u_1} (of_succ : (k : ) → (h : k < n + 1) → motive (k + 1) hmotive k ) (self : motive (n + 1) ) (mn : m n) (msn : m n + 1) :
              decreasingInduction of_succ self msn = decreasingInduction (fun (x : ) (x_1 : x < n) => of_succ x ) (of_succ n self) mn
              @[simp]
              theorem Nat.decreasingInduction_succ' {n : } {motive : (m : ) → m n + 1Sort u_1} (of_succ : (k : ) → (h : k < n + 1) → motive (k + 1) hmotive k ) (self : motive (n + 1) ) :
              decreasingInduction of_succ self = of_succ n self
              theorem Nat.decreasingInduction_trans {m n k : } {motive : (m : ) → m kSort u_1} (hmn : m n) (hnk : n k) (of_succ : (k_1 : ) → (h : k_1 < k) → motive (k_1 + 1) hmotive k_1 ) (self : motive k ) :
              decreasingInduction of_succ self = decreasingInduction (fun (x : ) (x_1 : x < n) => of_succ x ) (decreasingInduction of_succ self hnk) hmn
              theorem Nat.decreasingInduction_succ_left {m n : } {motive : (m : ) → m nSort u_1} (of_succ : (k : ) → (h : k < n) → motive (k + 1) hmotive k ) (self : motive n ) (smn : m + 1 n) (mn : m n) :
              decreasingInduction of_succ self mn = of_succ m smn (decreasingInduction of_succ self smn)
              @[irreducible]
              def Nat.strongSubRecursion {P : Sort u_1} (H : (m n : ) → ((x y : ) → x < my < nP x y)P m n) (n m : ) :
              P n m

              Given P : ℕ → ℕ → Sort*, if for all m n : ℕ we can extend P from the rectangle strictly below (m, n) to P m n, then we have P n m for all n m : ℕ. Note that for non-Prop output it is preferable to use the equation compiler directly if possible, since this produces equation lemmas.

              Equations
              Instances For
                @[irreducible]
                def Nat.pincerRecursion {P : Sort u_1} (Ha0 : (m : ) → P m 0) (H0b : (n : ) → P 0 n) (H : (x y : ) → P x y.succP x.succ yP x.succ y.succ) (n m : ) :
                P n m

                Given P : ℕ → ℕ → Sort*, if we have P m 0 and P 0 n for all m n : ℕ, and for any m n : ℕ we can extend P from (m, n + 1) and (m + 1, n) to (m + 1, n + 1) then we have P m n for all m n : ℕ.

                Note that for non-Prop output it is preferable to use the equation compiler directly if possible, since this produces equation lemmas.

                Equations
                Instances For
                  def Nat.decreasingInduction' {m n : } {P : Sort u_1} (h : (k : ) → k < nm kP (k + 1)P k) (mn : m n) (hP : P n) :
                  P m

                  Decreasing induction: if P (k+1) implies P k for all m ≤ k < n, then P n implies P m. Also works for functions to Sort*.

                  Weakens the assumptions of Nat.decreasingInduction.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[irreducible]
                    theorem Nat.diag_induction (P : Prop) (ha : ∀ (a : ), P (a + 1) (a + 1)) (hb : ∀ (b : ), P 0 (b + 1)) (hd : ∀ (a b : ), a < bP (a + 1) bP a (b + 1)P (a + 1) (b + 1)) (a b : ) :
                    a < bP a b

                    Given a predicate on two naturals P : ℕ → ℕ → Prop, P a b is true for all a < b if P (a + 1) (a + 1) is true for all a, P 0 (b + 1) is true for all b and for all a < b, P (a + 1) b is true and P a (b + 1) is true implies P (a + 1) (b + 1) is true.

                    theorem Nat.set_induction_bounded {n k : } {S : Set } (hk : k S) (h_ind : ∀ (k : ), k Sk + 1 S) (hnk : k n) :

                    A subset of containing k : ℕ and closed under Nat.succ contains every n ≥ k.

                    theorem Nat.set_induction {S : Set } (hb : 0 S) (h_ind : ∀ (k : ), k Sk + 1 S) (n : ) :

                    A subset of containing zero and closed under Nat.succ contains all of .

                    mod, dvd #

                    @[simp]
                    theorem Nat.mod_two_not_eq_one {n : } :
                    ¬n % 2 = 1 n % 2 = 0
                    @[simp]
                    theorem Nat.mod_two_not_eq_zero {n : } :
                    ¬n % 2 = 0 n % 2 = 1
                    theorem Nat.mod_two_ne_one {n : } :
                    n % 2 1 n % 2 = 0
                    theorem Nat.mod_two_ne_zero {n : } :
                    n % 2 0 n % 2 = 1
                    theorem Nat.lt_div_iff_mul_lt' {d n : } (hdn : d n) (a : ) :
                    a < n / d d * a < n

                    Variant of Nat.lt_div_iff_mul_lt that assumes d ∣ n.

                    theorem Nat.div_eq_iff_eq_of_dvd_dvd {a b n : } (hn : n 0) (ha : a n) (hb : b n) :
                    n / a = n / b a = b
                    theorem Nat.le_iff_ne_zero_of_dvd {a b : } (ha : a 0) (hab : a b) :
                    theorem Nat.div_ne_zero_iff_of_dvd {a b : } (hba : b a) :
                    @[simp]
                    theorem Nat.mul_mod_mod (a b c : ) :
                    a * (b % c) % c = a * b % c
                    theorem Nat.pow_mod (a b n : ) :
                    a ^ b % n = (a % n) ^ b % n
                    theorem Nat.not_pos_pow_dvd {a n : } :
                    1 < a1 < n¬a ^ n a
                    theorem Nat.lt_of_pow_dvd_right {a b n : } (hb : b 0) (ha : 2 a) (h : a ^ n b) :
                    n < b
                    theorem Nat.div_dvd_of_dvd {m n : } (h : n m) :
                    m / n m
                    theorem Nat.div_div_self {m n : } (h : n m) (hm : m 0) :
                    m / (m / n) = n
                    theorem Nat.not_dvd_of_pos_of_lt {m n : } (h1 : 0 < n) (h2 : n < m) :
                    theorem Nat.eq_of_dvd_of_lt_two_mul {a b : } (ha : a 0) (hdvd : b a) (hlt : a < 2 * b) :
                    a = b
                    theorem Nat.mod_eq_iff_lt {m n : } (hn : n 0) :
                    m % n = m m < n
                    @[simp]
                    theorem Nat.mod_succ_eq_iff_lt {m n : } :
                    @[simp]
                    theorem Nat.mod_succ (n : ) :
                    n % n.succ = n
                    theorem Nat.mod_add_div' (a b : ) :
                    a % b + a / b * b = a
                    theorem Nat.div_add_mod' (a b : ) :
                    a / b * b + a % b = a
                    theorem Nat.div_mod_unique {a b c d : } (h : 0 < b) :
                    a / b = d a % b = c c + b * d = a c < b

                    See also Nat.divModEquiv for a similar statement as an Equiv.

                    theorem Nat.sub_mod_eq_zero_of_mod_eq {m n k : } (h : m % k = n % k) :
                    (m - n) % k = 0

                    If m and n are equal mod k, m - n is zero mod k.

                    @[simp]
                    theorem Nat.one_mod (n : ) :
                    1 % (n + 2) = 1
                    theorem Nat.one_mod_eq_one {n : } :
                    1 % n = 1 n 1
                    @[deprecated "No deprecation message was provided." (since := "2024-08-28")]
                    theorem Nat.one_mod_of_ne_one {n : } :
                    n 11 % n = 1
                    theorem Nat.dvd_sub_mod {n : } (k : ) :
                    theorem Nat.add_mod_eq_ite {m n k : } :
                    (m + n) % k = if k m % k + n % k then m % k + n % k - k else m % k + n % k
                    theorem Nat.not_dvd_of_between_consec_multiples {m n k : } (h1 : n * k < m) (h2 : m < n * (k + 1)) :

                    m is not divisible by n if it is between n * k and n * (k + 1) for some k.

                    theorem Nat.dvd_add_left {a b c : } (h : a c) :
                    theorem Nat.dvd_add_right {a b c : } (h : a b) :
                    theorem Nat.mul_dvd_mul_iff_left {a b c : } (ha : 0 < a) :

                    special case of mul_dvd_mul_iff_left for . Duplicated here to keep simple imports for this file.

                    theorem Nat.mul_dvd_mul_iff_right {a b c : } (hc : 0 < c) :

                    special case of mul_dvd_mul_iff_right for . Duplicated here to keep simple imports for this file.

                    theorem Nat.add_mod_eq_add_mod_right {a b d : } (c : ) (H : a % d = b % d) :
                    (a + c) % d = (b + c) % d
                    theorem Nat.add_mod_eq_add_mod_left {a b d : } (c : ) (H : a % d = b % d) :
                    (c + a) % d = (c + b) % d
                    theorem Nat.mul_dvd_of_dvd_div {a b c : } (hcb : c b) (h : a b / c) :
                    c * a b
                    theorem Nat.eq_of_dvd_of_div_eq_one {a b : } (hab : a b) (h : b / a = 1) :
                    a = b
                    theorem Nat.eq_zero_of_dvd_of_div_eq_zero {a b : } (hab : a b) (h : b / a = 0) :
                    b = 0
                    theorem Nat.div_le_div {a b c d : } (h1 : a b) (h2 : d c) (h3 : d 0) :
                    a / c b / d
                    theorem Nat.lt_mul_div_succ {b : } (a : ) (hb : 0 < b) :
                    a < b * (a / b + 1)
                    theorem Nat.mul_add_mod' (a b c : ) :
                    (a * b + c) % b = c % b
                    theorem Nat.mul_add_mod_of_lt {a b c : } (h : c < b) :
                    (a * b + c) % b = c
                    @[simp]
                    theorem Nat.not_two_dvd_bit1 (n : ) :
                    @[simp]

                    A natural number m divides the sum m + n if and only if m divides n.

                    @[simp]

                    A natural number m divides the sum n + m if and only if m divides n.

                    theorem Nat.dvd_sub' {m n k : } (h₁ : k m) (h₂ : k n) :
                    @[irreducible]
                    theorem Nat.succ_div (a b : ) :
                    (a + 1) / b = a / b + if b a + 1 then 1 else 0
                    theorem Nat.succ_div_of_dvd {a b : } (hba : b a + 1) :
                    (a + 1) / b = a / b + 1
                    theorem Nat.succ_div_of_not_dvd {a b : } (hba : ¬b a + 1) :
                    (a + 1) / b = a / b
                    theorem Nat.dvd_iff_div_mul_eq (n d : ) :
                    d n n / d * d = n
                    theorem Nat.dvd_iff_dvd_dvd (n d : ) :
                    d n ∀ (k : ), k dk n
                    theorem Nat.dvd_div_of_mul_dvd {a b c : } (h : a * b c) :
                    @[simp]
                    theorem Nat.dvd_div_iff_mul_dvd {a b c : } (hbc : c b) :
                    theorem Nat.dvd_mul_of_div_dvd {a b c : } (h : b a) (hdiv : a / b c) :
                    @[simp]
                    theorem Nat.div_dvd_iff_dvd_mul {a b c : } (h : b a) (hb : b 0) :
                    @[simp]
                    theorem Nat.div_div_div_eq_div {a b c : } (dvd : b a) (dvd2 : a c) :
                    c / (a / b) / b = c / a
                    theorem Nat.eq_zero_of_dvd_of_lt {a b : } (w : a b) (h : b < a) :
                    b = 0

                    If a small natural number is divisible by a larger natural number, the small number is zero.

                    theorem Nat.le_of_lt_add_of_dvd {a b n : } (h : a < b + n) :
                    n an ba b

                    n is not divisible by a iff it is between a * k and a * (k + 1) for some k.

                    Two natural numbers are equal if and only if they have the same multiples.

                    Two natural numbers are equal if and only if they have the same divisors.

                    dvd is injective in the left argument

                    theorem Nat.div_lt_div_of_lt_of_dvd {a b d : } (hdb : d b) (h : a < b) :
                    a / d < b / d

                    Decidability of predicates #

                    instance Nat.decidableLoHi (lo hi : ) (P : Prop) [DecidablePred P] :
                    Decidable (∀ (x : ), lo xx < hiP x)
                    Equations
                    instance Nat.decidableLoHiLe (lo hi : ) (P : Prop) [DecidablePred P] :
                    Decidable (∀ (x : ), lo xx hiP x)
                    Equations