Documentation

Mathlib.Data.Nat.Factorization.PrimePow

Prime powers and factorizations #

This file deals with factorizations of prime powers.

@[deprecated IsPrimePow.exists_ordCompl_eq_one (since := "2024-10-24")]

Alias of IsPrimePow.exists_ordCompl_eq_one.

@[deprecated exists_ordCompl_eq_one_iff_isPrimePow (since := "2024-10-24")]

Alias of exists_ordCompl_eq_one_iff_isPrimePow.

An equivalent definition for prime powers: n is a prime power iff there is a unique prime dividing it.

theorem Nat.Coprime.isPrimePow_dvd_mul {n a b : } (hab : a.Coprime b) (hn : IsPrimePow n) :

The canonical equivalence between pairs (p, k) with p a prime and k : ℕ and the set of prime powers given by (p, k) ↦ p^(k+1).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Nat.Primes.prodNatEquiv_apply (p : Primes) (k : ) :
    prodNatEquiv (p, k) = p ^ (k + 1),
    @[simp]