Documentation

Mathlib.Data.Nat.Sqrt

Properties of the natural number square root function. #

sqrt #

See [Wikipedia, Methods of computing square roots] (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)).

@[irreducible]
theorem Nat.sqrt.iter_sq_le (n guess : ) :
iter n guess * iter n guess n
@[irreducible]
theorem Nat.sqrt.lt_iter_succ_sq (n guess : ) (hn : n < (guess + 1) * (guess + 1)) :
n < (iter n guess + 1) * (iter n guess + 1)
theorem Nat.sqrt_le (n : ) :
theorem Nat.sqrt_le' (n : ) :
theorem Nat.le_sqrt {m n : } :
theorem Nat.le_sqrt' {m n : } :
theorem Nat.sqrt_lt {m n : } :
theorem Nat.sqrt_lt' {m n : } :
theorem Nat.sqrt_le_sqrt {m n : } (h : m n) :
@[simp]
theorem Nat.sqrt_zero :
sqrt 0 = 0
@[simp]
theorem Nat.sqrt_one :
sqrt 1 = 1
theorem Nat.eq_sqrt {n a : } :
a = n.sqrt a * a n n < (a + 1) * (a + 1)
theorem Nat.eq_sqrt' {n a : } :
a = n.sqrt a ^ 2 n n < (a + 1) ^ 2
theorem Nat.sqrt_lt_self {n : } (h : 1 < n) :
theorem Nat.sqrt_pos {n : } :
theorem Nat.sqrt_add_eq {a : } (n : ) (h : a n + n) :
(n * n + a).sqrt = n
theorem Nat.sqrt_add_eq' {a : } (n : ) (h : a n + n) :
(n ^ 2 + a).sqrt = n
theorem Nat.sqrt_eq (n : ) :
(n * n).sqrt = n
theorem Nat.sqrt_eq' (n : ) :
(n ^ 2).sqrt = n
theorem Nat.not_exists_sq {m n : } (hl : m * m < n) (hr : n < (m + 1) * (m + 1)) :

There are no perfect squares strictly between m² and (m+1)²

theorem Nat.not_exists_sq' {m n : } :
m ^ 2 < nn < (m + 1) ^ 2¬ (t : ), t ^ 2 = n