Matrices with fixed determinant #
This file defines the type of matrices with fixed determinant m
and proves some basic results
about them.
We also prove that the subgroup of SL(2,ℤ)
generated by S
and T
is the whole group.
Note: Some of this was done originally in Lean 3 in the kbb (https://github.com/kim-em/kbb/tree/master) repository, so credit to those authors.
def
FixedDetMatrix
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
:
Type (max 0 u_1 u_2)
The subtype of matrices with fixed determinant m
.
Instances For
theorem
FixedDetMatrices.ext'
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
{m : R}
{A B : FixedDetMatrix n R m}
(h : ↑A = ↑B)
:
Extensionality theorem for FixedDetMatrix
with respect to the underlying matrix, not
entriwise.
theorem
FixedDetMatrices.ext
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
{m : R}
{A B : FixedDetMatrix n R m}
(h : ∀ (i j : n), ↑A i j = ↑B i j)
:
instance
FixedDetMatrices.instSMulSpecialLinearGroupFixedDetMatrix
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
:
SMul (Matrix.SpecialLinearGroup n R) (FixedDetMatrix n R m)
theorem
FixedDetMatrices.smul_def
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
(g : Matrix.SpecialLinearGroup n R)
(A : FixedDetMatrix n R m)
:
instance
FixedDetMatrices.instMulActionSpecialLinearGroupFixedDetMatrix
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
:
MulAction (Matrix.SpecialLinearGroup n R) (FixedDetMatrix n R m)
theorem
FixedDetMatrices.smul_coe
(n : Type u_1)
[DecidableEq n]
[Fintype n]
(R : Type u_2)
[CommRing R]
(m : R)
(g : Matrix.SpecialLinearGroup n R)
(A : FixedDetMatrix n R m)
:
def
FixedDetMatrices.reduceStep
{m : ℤ}
(A : FixedDetMatrix (Fin 2) ℤ m)
:
FixedDetMatrix (Fin 2) ℤ m
Reduction step for matrices in Δ m
which moves the matrices towards reps
.
Instances For
@[irreducible]
def
FixedDetMatrices.reduce_rec
{m : ℤ}
{C : FixedDetMatrix (Fin 2) ℤ m → Sort u_3}
(base : (A : FixedDetMatrix (Fin 2) ℤ m) → ↑A 1 0 = 0 → C A)
(step : (A : FixedDetMatrix (Fin 2) ℤ m) → ↑A 1 0 ≠ 0 → C (reduceStep A) → C A)
(A : FixedDetMatrix (Fin 2) ℤ m)
:
C A
Reduction lemma for integral FixedDetMatrices.
Equations
Instances For
@[irreducible]
Map from Δ m → Δ m
which reduces a FixedDetMatrix towards a representative element in reps.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
FixedDetMatrices.reduce_reduceStep
{m : ℤ}
{A : FixedDetMatrix (Fin 2) ℤ m}
(hc : ↑A 1 0 ≠ 0)
:
Equations
@[simp]
@[simp]
theorem
FixedDetMatrices.induction_on
{m : ℤ}
{C : FixedDetMatrix (Fin 2) ℤ m → Prop}
{A : FixedDetMatrix (Fin 2) ℤ m}
(hm : m ≠ 0)
(h0 : ∀ (A : FixedDetMatrix (Fin 2) ℤ m), ↑A 1 0 = 0 → 0 < ↑A 0 0 → 0 ≤ ↑A 0 1 → |↑A 0 1| < |↑A 1 1| → C A)
(hS : ∀ (B : FixedDetMatrix (Fin 2) ℤ m), C B → C (ModularGroup.S • B))
(hT : ∀ (B : FixedDetMatrix (Fin 2) ℤ m), C B → C (ModularGroup.T • B))
:
C A