Documentation

Mathlib.LinearAlgebra.Matrix.LDL

LDL decomposition #

This file proves the LDL-decomposition of matrices: Any positive definite matrix S can be decomposed as S = LDLแดด where L is a lower-triangular matrix and D is a diagonal matrix.

Main definitions #

Main result #

TODO #

noncomputable def LDL.lowerInv {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :
Matrix n n ๐•œ

The inverse of the lower triangular matrix L of the LDL-decomposition. It is obtained by applying Gram-Schmidt-Orthogonalization w.r.t. the inner product induced by Sแต€ on the standard basis vectors Pi.basisFun.

Equations
theorem LDL.lowerInv_eq_gramSchmidtBasis {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :
lowerInv hS = ((Pi.basisFun ๐•œ n).toMatrix โ‡‘(gramSchmidtBasis (Pi.basisFun ๐•œ n))).transpose
noncomputable instance LDL.invertibleLowerInv {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :
Equations
theorem LDL.lowerInv_orthogonal {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) {i j : n} (hโ‚€ : i โ‰  j) :
inner ((WithLp.equiv 2 (n โ†’ ๐•œ)).symm (lowerInv hS i)) ((WithLp.equiv 2 (n โ†’ ๐•œ)).symm (S.transpose.mulVec (lowerInv hS j))) = 0
noncomputable def LDL.diagEntries {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :
n โ†’ ๐•œ

The entries of the diagonal matrix D of the LDL decomposition.

Equations
noncomputable def LDL.diag {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :
Matrix n n ๐•œ

The diagonal matrix D of the LDL decomposition.

Equations
theorem LDL.lowerInv_triangular {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) {i j : n} (hij : i < j) :
lowerInv hS i j = 0
theorem LDL.diag_eq_lowerInv_conj {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :

Inverse statement of LDL decomposition: we can conjugate a positive definite matrix by some lower triangular matrix and get a diagonal matrix.

noncomputable def LDL.lower {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :
Matrix n n ๐•œ

The lower triangular matrix L of the LDL decomposition.

Equations
theorem LDL.lower_conj_diag {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [LinearOrder n] [WellFoundedLT n] [LocallyFiniteOrderBot n] {S : Matrix n n ๐•œ} [Fintype n] (hS : S.PosDef) :

LDL decomposition: any positive definite matrix S can be decomposed as S = LDLแดด where L is a lower-triangular matrix and D is a diagonal matrix.