Bernoulli polynomials #
The Bernoulli polynomials are an important tool obtained from Bernoulli numbers.
Mathematical overview #
The $n$-th Bernoulli polynomial is defined as $$ B_n(X) = ∑_{k = 0}^n {n \choose k} (-1)^k B_k X^{n - k} $$ where $B_k$ is the $k$-th Bernoulli number. The Bernoulli polynomials are generating functions, $$ \frac{t e^{tX} }{ e^t - 1} = ∑_{n = 0}^{\infty} B_n(X) \frac{t^n}{n!} $$
Implementation detail #
Bernoulli polynomials are defined using bernoulli
, the Bernoulli numbers.
Main theorems #
sum_bernoulli
: The sum of the $k^\mathrm{th}$ Bernoulli polynomial with binomial coefficients up ton
is(n + 1) * X^n
.Polynomial.bernoulli_generating_function
: The Bernoulli polynomials act as generating functions for the exponential.
TODO #
bernoulli_eval_one_neg
: $$ B_n(1 - x) = (-1)^n B_n(x) $$
The Bernoulli polynomials are defined in terms of the negative Bernoulli numbers.
Equations
Instances For
Another version of Polynomial.sum_bernoulli
.
Another version of sum_range_pow
.
theorem
Polynomial.bernoulli_generating_function
{A : Type u_1}
[CommRing A]
[Algebra ℚ A]
(t : A)
:
The theorem that $(e^X - 1) * ∑ Bₙ(t)* X^n/n! = Xe^{tX}$