Documentation

Mathlib.NumberTheory.Padics.PadicVal.Basic

p-adic Valuation #

This file defines the p-adic valuation on , , and .

The p-adic valuation on is the difference of the multiplicities of p in the numerator and denominator of q. This function obeys the standard properties of a valuation, with the appropriate assumptions on p. The p-adic valuations on and agree with that on .

The valuation induces a norm on . This norm is defined in padicNorm.lean.

Notations #

This file uses the local notation /. for Rat.mk.

Implementation notes #

Much, but not all, of this file assumes that p is prime. This assumption is inferred automatically by taking [Fact p.Prime] as a type class argument.

Calculations with p-adic valuations #

References #

Tags #

p-adic, p adic, padic, norm, valuation

@[simp]
theorem padicValNat.self {p : } (hp : 1 < p) :

If p ≠ 0 and p ≠ 1, then padicValNat p p is 1.

@[csimp]

Allows for more efficient code for padicValNat

def padicValInt (p : ) (z : ) :

For p ≠ 1, the p-adic valuation of an integer z ≠ 0 is the largest natural number k such that p^k divides z. If x = 0 or p = 1, then padicValInt p q defaults to 0.

Equations
Instances For
    theorem padicValInt.of_ne_one_ne_zero {p : } {z : } (hp : p 1) (hz : z 0) :
    @[simp]
    theorem padicValInt.zero {p : } :

    padicValInt p 0 is 0 for any p.

    @[simp]
    theorem padicValInt.one {p : } :

    padicValInt p 1 is 0 for any p.

    @[simp]
    theorem padicValInt.of_nat {p n : } :

    The p-adic value of a natural is its p-adic value as an integer.

    theorem padicValInt.self {p : } (hp : 1 < p) :
    padicValInt p p = 1

    If p ≠ 0 and p ≠ 1, then padicValInt p p is 1.

    def padicValRat (p : ) (q : ) :

    padicValRat defines the valuation of a rational q to be the valuation of q.num minus the valuation of q.den. If q = 0 or p = 1, then padicValRat p q defaults to 0.

    Equations
    Instances For
      theorem padicValRat_def (p : ) (q : ) :
      @[simp]
      theorem padicValRat.neg {p : } (q : ) :

      padicValRat p q is symmetric in q.

      @[simp]
      theorem padicValRat.zero {p : } :

      padicValRat p 0 is 0 for any p.

      @[simp]
      theorem padicValRat.one {p : } :

      padicValRat p 1 is 0 for any p.

      @[simp]
      theorem padicValRat.of_int {p : } {z : } :
      padicValRat p z = (padicValInt p z)

      The p-adic value of an integer z ≠ 0 is its p-adic_value as a rational.

      theorem padicValRat.of_int_multiplicity {p : } {z : } (hp : p 1) (hz : z 0) :
      padicValRat p z = (multiplicity (↑p) z)

      The p-adic value of an integer z ≠ 0 is the multiplicity of p in z.

      @[simp]
      theorem padicValRat.of_nat {p n : } :
      padicValRat p n = (padicValNat p n)

      The p-adic value of an integer z ≠ 0 is its p-adic value as a rational.

      theorem padicValRat.self {p : } (hp : 1 < p) :
      padicValRat p p = 1

      If p ≠ 0 and p ≠ 1, then padicValRat p p is 1.

      theorem padicValRat_of_nat {p : } (n : ) :

      padicValRat coincides with padicValNat.

      @[simp]
      theorem padicValNat_self {p : } [Fact (Nat.Prime p)] :
      theorem one_le_padicValNat_of_dvd {p n : } [hp : Fact (Nat.Prime p)] (hn : 0 < n) (div : p n) :

      The multiplicity of p : ℕ in a : ℤ is finite exactly when a ≠ 0.

      theorem padicValRat.defn (p : ) [hp : Fact (Nat.Prime p)] {q : } {n d : } (hqz : q 0) (qdf : q = Rat.divInt n d) :
      padicValRat p q = (multiplicity (↑p) n) - (multiplicity (↑p) d)

      A rewrite lemma for padicValRat p q when q is expressed in terms of Rat.mk.

      theorem padicValRat.mul {p : } [hp : Fact (Nat.Prime p)] {q r : } (hq : q 0) (hr : r 0) :

      A rewrite lemma for padicValRat p (q * r) with conditions q ≠ 0, r ≠ 0.

      theorem padicValRat.pow {p : } [hp : Fact (Nat.Prime p)] {q : } (hq : q 0) {k : } :

      A rewrite lemma for padicValRat p (q^k) with condition q ≠ 0.

      theorem padicValRat.inv {p : } [hp : Fact (Nat.Prime p)] (q : ) :

      A rewrite lemma for padicValRat p (q⁻¹) with condition q ≠ 0.

      theorem padicValRat.div {p : } [hp : Fact (Nat.Prime p)] {q r : } (hq : q 0) (hr : r 0) :

      A rewrite lemma for padicValRat p (q / r) with conditions q ≠ 0, r ≠ 0.

      theorem padicValRat.padicValRat_le_padicValRat_iff {p : } [hp : Fact (Nat.Prime p)] {n₁ n₂ d₁ d₂ : } (hn₁ : n₁ 0) (hn₂ : n₂ 0) (hd₁ : d₁ 0) (hd₂ : d₂ 0) :
      padicValRat p (Rat.divInt n₁ d₁) padicValRat p (Rat.divInt n₂ d₂) ∀ (n : ), p ^ n n₁ * d₂p ^ n n₂ * d₁

      A condition for padicValRat p (n₁ / d₁) ≤ padicValRat p (n₂ / d₂), in terms of divisibility by p^n.

      theorem padicValRat.le_padicValRat_add_of_le {p : } [hp : Fact (Nat.Prime p)] {q r : } (hqr : q + r 0) (h : padicValRat p q padicValRat p r) :

      Sufficient conditions to show that the p-adic valuation of q is less than or equal to the p-adic valuation of q + r.

      theorem padicValRat.min_le_padicValRat_add {p : } [hp : Fact (Nat.Prime p)] {q r : } (hqr : q + r 0) :

      The minimum of the valuations of q and r is at most the valuation of q + r.

      theorem padicValRat.add_eq_min {p : } [hp : Fact (Nat.Prime p)] {q r : } (hqr : q + r 0) (hq : q 0) (hr : r 0) (hval : padicValRat p q padicValRat p r) :

      Ultrametric property of a p-adic valuation.

      theorem padicValRat.add_eq_of_lt {p : } [hp : Fact (Nat.Prime p)] {q r : } (hqr : q + r 0) (hq : q 0) (hr : r 0) (hval : padicValRat p q < padicValRat p r) :
      theorem padicValRat.lt_add_of_lt {p : } [hp : Fact (Nat.Prime p)] {q r₁ r₂ : } (hqr : r₁ + r₂ 0) (hval₁ : padicValRat p q < padicValRat p r₁) (hval₂ : padicValRat p q < padicValRat p r₂) :
      @[simp]
      theorem padicValRat.self_pow_inv {p : } [hp : Fact (Nat.Prime p)] (r : ) :
      theorem padicValRat.sum_pos_of_pos {p : } [hp : Fact (Nat.Prime p)] {n : } {F : } (hF : i < n, 0 < padicValRat p (F i)) (hn0 : iFinset.range n, F i 0) :
      0 < padicValRat p (∑ iFinset.range n, F i)

      A finite sum of rationals with positive p-adic valuation has positive p-adic valuation (if the sum is non-zero).

      theorem padicValRat.lt_sum_of_lt {p j : } [hp : Fact (Nat.Prime p)] {F : } {S : Finset } (hS : S.Nonempty) (hF : iS, padicValRat p (F j) < padicValRat p (F i)) (hn1 : ∀ (i : ), 0 < F i) :
      padicValRat p (F j) < padicValRat p (∑ iS, F i)

      If the p-adic valuation of a finite set of positive rationals is greater than a given rational number, then the p-adic valuation of their sum is also greater than the same rational number.

      theorem padicValNat.mul {p a b : } [hp : Fact (Nat.Prime p)] :

      A rewrite lemma for padicValNat p (a * b) with conditions a ≠ 0, b ≠ 0.

      theorem padicValNat.div_of_dvd {p a b : } [hp : Fact (Nat.Prime p)] (h : b a) :
      theorem padicValNat.div {p b : } [hp : Fact (Nat.Prime p)] (dvd : p b) :

      Dividing out by a prime factor reduces the padicValNat by 1.

      theorem padicValNat.pow {p a : } [hp : Fact (Nat.Prime p)] (n : ) (ha : a 0) :

      A version of padicValRat.pow for padicValNat.

      @[simp]
      theorem padicValNat.prime_pow {p : } [hp : Fact (Nat.Prime p)] (n : ) :
      theorem padicValNat.div_pow {p a b : } [hp : Fact (Nat.Prime p)] (dvd : p ^ a b) :
      theorem padicValNat.div' {p : } [hp : Fact (Nat.Prime p)] {m : } (cpm : p.Coprime m) {b : } (dvd : m b) :
      theorem padicValNat_dvd_iff_le {p : } [hp : Fact (Nat.Prime p)] {a n : } (ha : a 0) :
      theorem padicValNat_dvd_iff {p : } (n : ) [hp : Fact (Nat.Prime p)] (a : ) :
      theorem pow_succ_padicValNat_not_dvd {p n : } [hp : Fact (Nat.Prime p)] (hn : n 0) :
      theorem padicValNat_primes {p q : } [hp : Fact (Nat.Prime p)] [hq : Fact (Nat.Prime q)] (neq : p q) :
      theorem padicValNat_prime_prime_pow {p q : } [hp : Fact (Nat.Prime p)] [hq : Fact (Nat.Prime q)] (n : ) (neq : p q) :
      theorem padicValNat_mul_pow_left {p q : } [hp : Fact (Nat.Prime p)] [hq : Fact (Nat.Prime q)] (n m : ) (neq : p q) :
      theorem padicValNat_mul_pow_right {p q : } [hp : Fact (Nat.Prime p)] [hq : Fact (Nat.Prime q)] (n m : ) (neq : q p) :
      theorem padicValNat_le_nat_log {p : } (n : ) :

      The p-adic valuation of n is less than or equal to its logarithm w.r.t p.

      theorem nat_log_eq_padicValNat_iff {p n : } [hp : Fact (Nat.Prime p)] (hn : 0 < n) :

      The p-adic valuation of n is equal to the logarithm w.r.t p iff n is less than p raised to one plus the p-adic valuation of n.

      The p-adic valuation of (p * n)! is n more than that of n!.

      theorem padicValNat_eq_zero_of_mem_Ioo {p m k : } (hm : m Set.Ioo (p * k) (p * (k + 1))) :

      The p-adic valuation of m equals zero if it is between p * k and p * (k + 1) for some k.

      @[simp]

      The p-adic valuation of n! is equal to the p-adic valuation of the factorial of the largest multiple of p below n, i.e. (p * ⌊n / p⌋)!.

      theorem padicValNat_factorial {p n b : } [hp : Fact (Nat.Prime p)] (hnb : Nat.log p n < b) :
      padicValNat p n.factorial = iFinset.Ico 1 b, n / p ^ i

      Legendre's Theorem

      The p-adic valuation of n! is the sum of the quotients n / p ^ i. This sum is expressed over the finset Ico 1 b where b is any bound greater than log p n.

      Legendre's Theorem

      Taking (p - 1) times the p-adic valuation of n! equals n minus the sum of base p digits of n.

      theorem padicValNat_choose {p n k b : } [hp : Fact (Nat.Prime p)] (hkn : k n) (hnb : Nat.log p n < b) :
      padicValNat p (n.choose k) = (Finset.filter (fun (i : ) => p ^ i k % p ^ i + (n - k) % p ^ i) (Finset.Ico 1 b)).card

      Kummer's Theorem

      The p-adic valuation of n.choose k is the number of carries when k and n - k are added in base p. This sum is expressed over the finset Ico 1 b where b is any bound greater than log p n.

      theorem padicValNat_choose' {p n k b : } [hp : Fact (Nat.Prime p)] (hnb : Nat.log p (n + k) < b) :
      padicValNat p ((n + k).choose k) = (Finset.filter (fun (i : ) => p ^ i k % p ^ i + n % p ^ i) (Finset.Ico 1 b)).card

      Kummer's Theorem

      The p-adic valuation of (n + k).choose k is the number of carries when k and n are added in base p. This sum is expressed over the finset Ico 1 b where b is any bound greater than log p (n + k).

      Kummer's Theorem Taking (p - 1) times the p-adic valuation of the binomial n + k over k equals the sum of the digits of k plus the sum of the digits of n minus the sum of digits of n + k, all base p.

      Kummer's Theorem Taking (p - 1) times the p-adic valuation of the binomial n over k equals the sum of the digits of k plus the sum of the digits of n - k minus the sum of digits of n, all base p.

      theorem padicValInt_dvd_iff {p : } [hp : Fact (Nat.Prime p)] (n : ) (a : ) :
      theorem padicValInt_dvd {p : } [hp : Fact (Nat.Prime p)] (a : ) :
      theorem padicValInt_self {p : } [hp : Fact (Nat.Prime p)] :
      padicValInt p p = 1
      theorem padicValInt.mul {p : } [hp : Fact (Nat.Prime p)] {a b : } (ha : a 0) (hb : b 0) :
      theorem padicValInt_mul_eq_succ {p : } [hp : Fact (Nat.Prime p)] (a : ) (ha : a 0) :