⊤ and ⊥, bounded lattices and variants #
This file defines top and bottom elements (greatest and least elements) of a type, the bounded
variants of different kinds of lattices, sets up the typeclass hierarchy between them and provides
instances for Prop
and fun
.
Main declarations #
<Top/Bot> α
: Typeclasses to declare the⊤
/⊥
notation.Order<Top/Bot> α
: Order with a top/bottom element.BoundedOrder α
: Order with a top and bottom element.
Top, bottom element #
An order is (noncomputably) either an OrderTop
or a NoTopOrder
. Use as
casesI topOrderOrNoTopOrder α
.
Equations
- topOrderOrNoTopOrder α = if H : ∀ (a : α), ∃ (b : α), ¬b ≤ a then PSum.inr ⋯ else PSum.inl (OrderTop.mk ⋯)
Instances For
Alias of the forward direction of isMax_iff_eq_top
.
Alias of the forward direction of isTop_iff_eq_top
.
theorem
OrderTop.ext_top
{α : Type u_1}
{hA : PartialOrder α}
(A : OrderTop α)
{hB : PartialOrder α}
(B : OrderTop α)
(H : ∀ (x y : α), x ≤ y ↔ x ≤ y)
:
An order is (noncomputably) either an OrderBot
or a NoBotOrder
. Use as
casesI botOrderOrNoBotOrder α
.
Equations
- botOrderOrNoBotOrder α = if H : ∀ (a : α), ∃ (b : α), ¬a ≤ b then PSum.inr ⋯ else PSum.inl (OrderBot.mk ⋯)
Instances For
Alias of bot_lt_of_lt
.
Alias of the forward direction of isMin_iff_eq_bot
.
Alias of the forward direction of isBot_iff_eq_bot
.
theorem
OrderBot.ext_bot
{α : Type u_1}
{hA : PartialOrder α}
(A : OrderBot α)
{hB : PartialOrder α}
(B : OrderBot α)
(H : ∀ (x y : α), x ≤ y ↔ x ≤ y)
:
Bounded order #
Function lattices #
instance
Pi.instBotForall
{ι : Type u_1}
{α' : ι → Type u_2}
[(i : ι) → Bot (α' i)]
:
Bot ((i : ι) → α' i)
Equations
- Pi.instBotForall = { bot := fun (x : ι) => ⊥ }
instance
Pi.instTopForall
{ι : Type u_1}
{α' : ι → Type u_2}
[(i : ι) → Top (α' i)]
:
Top ((i : ι) → α' i)
Equations
- Pi.instTopForall = { top := fun (x : ι) => ⊤ }
instance
Pi.instBoundedOrder
{ι : Type u_1}
{α' : ι → Type u_2}
[(i : ι) → LE (α' i)]
[(i : ι) → BoundedOrder (α' i)]
:
BoundedOrder ((i : ι) → α' i)
Equations
Subtype, order dual, product lattices #
@[reducible, inline]
abbrev
Subtype.boundedOrder
{α : Type u}
{p : α → Prop}
[LE α]
[BoundedOrder α]
(hbot : p ⊥)
(htop : p ⊤)
:
BoundedOrder (Subtype p)
A subtype remains a bounded order if the property holds at ⊥
and ⊤
.
Instances For
instance
Prod.instBoundedOrder
(α : Type u)
(β : Type v)
[LE α]
[LE β]
[BoundedOrder α]
[BoundedOrder β]
:
BoundedOrder (α × β)
Equations
- ULift.instTop = { top := { down := ⊤ } }
Equations
- ULift.instBot = { bot := { down := ⊥ } }
Equations
Equations
Equations
@[simp]
@[simp]
@[simp]