Documentation

Mathlib.Order.Nucleus

Nucleus #

Locales are the dual concept to frames. Locale theory is a branch of point-free topology, where intuitively locales are like topological spaces which may or may not have enough points. Sublocales of a locale generalize the concept of subspaces in topology to the point-free setting.

A nucleus is an endomorphism of a frame which corresponds to a sublocale.

References #

https://ncatlab.org/nlab/show/sublocale https://ncatlab.org/nlab/show/nucleus

structure Nucleus (X : Type u_2) [SemilatticeInf X] extends InfHom X X :
Type u_2

A nucleus is an inflationary idempotent inf-preserving endomorphism of a semilattice. In a frame, nuclei correspond to sublocales.

Instances For
    class NucleusClass (F : Type u_2) (X : Type u_3) [SemilatticeInf X] [FunLike F X X] extends InfHomClass F X X :

    NucleusClass F X states that F is a type of nuclei.

    Instances
      instance Nucleus.instFunLike {X : Type u_1} [CompleteLattice X] :
      Equations
      theorem Nucleus.toFun_eq_coe {X : Type u_1} [CompleteLattice X] (n : Nucleus X) :
      n.toFun = n
      @[simp]
      theorem Nucleus.coe_toInfHom {X : Type u_1} [CompleteLattice X] (n : Nucleus X) :
      @[simp]
      theorem Nucleus.coe_mk {X : Type u_1} [CompleteLattice X] (f : InfHom X X) (h1 : ∀ (x : X), f.toFun (f.toFun x) f.toFun x) (h2 : ∀ (x : X), x f.toFun x) :
      theorem Nucleus.idempotent {X : Type u_1} [CompleteLattice X] {n : Nucleus X} {x : X} :
      theorem Nucleus.le_apply {X : Type u_1} [CompleteLattice X] {n : Nucleus X} {x : X} :
      x n x
      theorem Nucleus.map_inf {X : Type u_1} [CompleteLattice X] {n : Nucleus X} {x y : X} :
      theorem Nucleus.ext {X : Type u_1} [CompleteLattice X] {m n : Nucleus X} (h : ∀ (a : X), m a = n a) :
      m = n

      A Nucleus preserves ⊤.

      @[simp]
      theorem Nucleus.coe_le_coe {X : Type u_1} [CompleteLattice X] {n m : Nucleus X} :
      @[simp]
      theorem Nucleus.coe_lt_coe {X : Type u_1} [CompleteLattice X] {n m : Nucleus X} :
      m < n m < n
      instance Nucleus.instBot {X : Type u_1} [CompleteLattice X] :

      The smallest Nucleus is the identity.

      Equations
      • Nucleus.instBot = { bot := { toFun := fun (x : X) => x, map_inf' := , idempotent' := , le_apply' := } }
      instance Nucleus.instTop {X : Type u_1} [CompleteLattice X] :

      The biggest Nucleus sends everything to .

      Equations
      • Nucleus.instTop = { top := { toFun := , map_inf' := , idempotent' := , le_apply' := } }
      @[simp]
      @[simp]
      @[simp]
      theorem Nucleus.bot_apply {X : Type u_1} [CompleteLattice X] (x : X) :
      x = x
      @[simp]
      theorem Nucleus.top_apply {X : Type u_1} [CompleteLattice X] (x : X) :