Order filters #
Main definitions #
Throughout this file, P
is at least a preorder, but some sections require more structure,
such as a bottom element, a top element, or a join-semilattice structure.
Order.PFilter P
: The type of nonempty, downward directed, upward closed subsets ofP
. This is dual toOrder.Ideal
, so it simply wrapsOrder.Ideal Pᵒᵈ
.Order.IsPFilter P
: a predicate for when aSet P
is a filter.
Note the relation between Order/Filter
and Order/PFilter
: for any type α
,
Filter α
represents the same mathematical object as PFilter (Set α)
.
References #
Tags #
pfilter, filter, ideal, dual
A predicate for when a subset of P
is a filter.
Instances For
Create an element of type Order.PFilter
from a set satisfying the predicate
Order.IsPFilter
.
Equations
Instances For
Equations
- Order.PFilter.instInhabited = { default := { dual := default } }
A filter on P
is a subset of P
.
Equations
- Order.PFilter.instSetLike = { coe := fun (F : Order.PFilter P) => ⇑OrderDual.toDual ⁻¹' F.dual.carrier, coe_injective' := ⋯ }
theorem
Order.PFilter.directed
{P : Type u_1}
[Preorder P]
(F : PFilter P)
:
DirectedOn (fun (x1 x2 : P) => x1 ≥ x2) ↑F
The smallest filter containing a given element.
Instances For
There is a bottom filter when P
has a top element.
Equations
There is a top filter when P
has a bottom element.
Equations
theorem
Order.PFilter.sInf_gc
{P : Type u_1}
[CompleteSemilatticeInf P]
:
GaloisConnection (fun (x : P) => OrderDual.toDual (principal x)) fun (F : (PFilter P)ᵒᵈ) => sInf ↑(OrderDual.ofDual F)
def
Order.PFilter.infGi
{P : Type u_1}
[CompleteSemilatticeInf P]
:
GaloisCoinsertion (fun (x : P) => OrderDual.toDual (principal x)) fun (F : (PFilter P)ᵒᵈ) => sInf ↑(OrderDual.ofDual F)
If a poset P
admits arbitrary Inf
s, then principal
and Inf
form a Galois coinsertion.