Documentation

Mathlib.RingTheory.Flat.Basic

Flat modules #

A module M over a commutative ring R is flat if for all finitely generated ideals I of R, the canonical map I ⊗ M →ₗ M is injective.

This is equivalent to the claim that for all injective R-linear maps f : M₁ → M₂ the induced map M₁ ⊗ M → M₂ ⊗ M is injective. See https://stacks.math.columbia.edu/tag/00HD.

Main declaration #

Main theorems #

TODO #

class Module.Flat (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] :

An R-module M is flat if for all finitely generated ideals I of R, the canonical map I ⊗ M →ₗ M is injective.

Instances
    theorem Module.flat_iff (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] :
    theorem Module.Flat.out {R : Type u} {M : Type v} :
    ∀ {inst : CommRing R} {inst_1 : AddCommGroup M} {inst_2 : Module R M} [self : Module.Flat R M] ⦃I : Ideal R⦄, I.FGFunction.Injective (TensorProduct.lift (LinearMap.lsmul R M ∘ₗ Submodule.subtype I))
    instance Module.Flat.instSubalgebraToSubmodule {R : Type u} [CommRing R] {S : Type v} [Ring S] [Algebra R S] (A : Subalgebra R S) [Module.Flat R A] :
    Module.Flat R (Subalgebra.toSubmodule A)
    Equations
    • = inst
    instance Module.Flat.self (R : Type u) [CommRing R] :
    Equations
    • =

    An R-module M is flat iff for all finitely generated ideals I of R, the tensor product of the inclusion I → R and the identity M → M is injective. See iff_rTensor_injective' to extend to all ideals I. -

    An R-module M is flat iff for all ideals I of R, the tensor product of the inclusion I → R and the identity M → M is injective. See iff_rTensor_injective to restrict to finitely generated ideals I. -

    @[deprecated LinearMap.lTensor_inj_iff_rTensor_inj]

    Alias of LinearMap.lTensor_inj_iff_rTensor_inj.


    Given a linear map f : N → P, f ⊗ M is injective if and only if M ⊗ f is injective.

    The lTensor-variant of iff_rTensor_injective. .

    theorem Module.Flat.of_retract (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] (N : Type w) [AddCommGroup N] [Module R N] [f : Module.Flat R M] (i : N →ₗ[R] M) (r : M →ₗ[R] N) (h : r ∘ₗ i = LinearMap.id) :

    A retract of a flat R-module is flat.

    theorem Module.Flat.of_linearEquiv (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] (N : Type w) [AddCommGroup N] [Module R N] [f : Module.Flat R M] (e : N ≃ₗ[R] M) :

    A R-module linearly equivalent to a flat R-module is flat.

    theorem Module.Flat.equiv_iff (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] (N : Type w) [AddCommGroup N] [Module R N] (e : M ≃ₗ[R] N) :

    If an R-module M is linearly equivalent to another R-module N, then M is flat if and only if N is flat.

    instance Module.Flat.ulift (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] [Module.Flat R M] :
    Equations
    • =
    Equations
    • =
    instance Module.Flat.directSum (R : Type u) [CommRing R] (ι : Type v) (M : ιType w) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] [F : ∀ (i : ι), Module.Flat R (M i)] :
    Module.Flat R (DirectSum ι fun (i : ι) => M i)

    A direct sum of flat R-modules is flat.

    Equations
    • =
    instance Module.Flat.finsupp (R : Type u) [CommRing R] (ι : Type v) :

    Free R-modules over discrete types are flat.

    Equations
    • =
    instance Module.Flat.of_free (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] :
    Equations
    • =
    theorem Module.Flat.of_projective_surjective (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] (ι : Type w) [Module.Projective R M] (p : (ι →₀ R) →ₗ[R] M) (hp : Function.Surjective p) :

    A projective module with a discrete type of generator is flat

    instance Module.Flat.of_projective (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] [h : Module.Projective R M] :
    Equations
    • =
    theorem Module.Flat.injective_characterModule_iff_rTensor_preserves_injective_linearMap (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] :
    Module.Injective R (CharacterModule M) ∀ ⦃N N' : Type v⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : Module R N] [inst_3 : Module R N'] (L : N →ₗ[R] N'), Function.Injective LFunction.Injective (LinearMap.rTensor M L)

    Define the character module of M to be M →+ ℚ ⧸ ℤ. The character module of M is an injective module if and only if L ⊗ 𝟙 M is injective for any linear map L in the same universe as M.

    CharacterModule M is an injective module iff M is flat.

    theorem Module.Flat.rTensor_preserves_injective_linearMap {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] {N : Type w} [AddCommGroup N] [Module R N] {N' : Type u_1} [AddCommGroup N'] [Module R N'] [h : Module.Flat R M] (L : N →ₗ[R] N') (hL : Function.Injective L) :

    If M is a flat module, then f ⊗ 𝟙 M is injective for all injective linear maps f.

    @[deprecated Module.Flat.rTensor_preserves_injective_linearMap]
    theorem Module.Flat.preserves_injective_linearMap {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] {N : Type w} [AddCommGroup N] [Module R N] {N' : Type u_1} [AddCommGroup N'] [Module R N'] [h : Module.Flat R M] (L : N →ₗ[R] N') (hL : Function.Injective L) :

    Alias of Module.Flat.rTensor_preserves_injective_linearMap.


    If M is a flat module, then f ⊗ 𝟙 M is injective for all injective linear maps f.

    theorem Module.Flat.lTensor_preserves_injective_linearMap {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] {N : Type w} [AddCommGroup N] [Module R N] {N' : Type u_1} [AddCommGroup N'] [Module R N'] [Module.Flat R M] (L : N →ₗ[R] N') (hL : Function.Injective L) :

    If M is a flat module, then 𝟙 M ⊗ f is injective for all injective linear maps f.

    theorem Module.Flat.iff_rTensor_preserves_injective_linearMap' (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] [Small.{v', u} R] [Small.{v', v} M] :
    Module.Flat R M ∀ ⦃N N' : Type v'⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : Module R N] [inst_3 : Module R N'] (f : N →ₗ[R] N'), Function.Injective fFunction.Injective (LinearMap.rTensor M f)

    M is flat if and only if f ⊗ 𝟙 M is injective whenever f is an injective linear map. See Module.Flat.iff_rTensor_preserves_injective_linearMap to specialize the universe of N, N', N'' to Type (max u v).

    theorem Module.Flat.iff_rTensor_preserves_injective_linearMap (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] :
    Module.Flat R M ∀ ⦃N N' : Type (max u v)⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : Module R N] [inst_3 : Module R N'] (f : N →ₗ[R] N'), Function.Injective fFunction.Injective (LinearMap.rTensor M f)

    M is flat if and only if f ⊗ 𝟙 M is injective whenever f is an injective linear map. See Module.Flat.iff_rTensor_preserves_injective_linearMap' to generalize the universe of N, N', N'' to any universe that is higher than R and M.

    theorem Module.Flat.iff_lTensor_preserves_injective_linearMap' (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] [Small.{v', u} R] [Small.{v', v} M] :
    Module.Flat R M ∀ ⦃N N' : Type v'⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : Module R N] [inst_3 : Module R N'] (L : N →ₗ[R] N'), Function.Injective LFunction.Injective (LinearMap.lTensor M L)

    M is flat if and only if 𝟙 M ⊗ f is injective whenever f is an injective linear map. See Module.Flat.iff_lTensor_preserves_injective_linearMap to specialize the universe of N, N', N'' to Type (max u v).

    theorem Module.Flat.iff_lTensor_preserves_injective_linearMap (R : Type u) (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] :
    Module.Flat R M ∀ ⦃N N' : Type (max u v)⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : Module R N] [inst_3 : Module R N'] (f : N →ₗ[R] N'), Function.Injective fFunction.Injective (LinearMap.lTensor M f)

    M is flat if and only if 𝟙 M ⊗ f is injective whenever f is an injective linear map. See Module.Flat.iff_lTensor_preserves_injective_linearMap' to generalize the universe of N, N', N'' to any universe that is higher than R and M.

    theorem Module.Flat.lTensor_exact {R : Type u} (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] [Module.Flat R M] ⦃N : Type u_1⦄ ⦃N' : Type u_2⦄ ⦃N'' : Type u_3⦄ [AddCommGroup N] [AddCommGroup N'] [AddCommGroup N''] [Module R N] [Module R N'] [Module R N''] ⦃f : N →ₗ[R] N' ⦃g : N' →ₗ[R] N'' (exact : Function.Exact f g) :

    If M is flat then M ⊗ - is an exact functor.

    theorem Module.Flat.rTensor_exact {R : Type u} (M : Type v) [CommRing R] [AddCommGroup M] [Module R M] [Module.Flat R M] ⦃N : Type u_1⦄ ⦃N' : Type u_2⦄ ⦃N'' : Type u_3⦄ [AddCommGroup N] [AddCommGroup N'] [AddCommGroup N''] [Module R N] [Module R N'] [Module R N''] ⦃f : N →ₗ[R] N' ⦃g : N' →ₗ[R] N'' (exact : Function.Exact f g) :

    If M is flat then - ⊗ M is an exact functor.

    theorem Module.Flat.iff_lTensor_exact' {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] [Small.{v', u} R] [Small.{v', v} M] :
    Module.Flat R M ∀ ⦃N N' N'' : Type v'⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : AddCommGroup N''] [inst_3 : Module R N] [inst_4 : Module R N'] [inst_5 : Module R N''] ⦃f : N →ₗ[R] N'⦄ ⦃g : N' →ₗ[R] N''⦄, Function.Exact f gFunction.Exact (LinearMap.lTensor M f) (LinearMap.lTensor M g)

    M is flat if and only if M ⊗ - is an exact functor. See Module.Flat.iff_lTensor_exact to specialize the universe of N, N', N'' to Type (max u v).

    theorem Module.Flat.iff_lTensor_exact {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] :
    Module.Flat R M ∀ ⦃N N' N'' : Type (max u v)⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : AddCommGroup N''] [inst_3 : Module R N] [inst_4 : Module R N'] [inst_5 : Module R N''] ⦃f : N →ₗ[R] N'⦄ ⦃g : N' →ₗ[R] N''⦄, Function.Exact f gFunction.Exact (LinearMap.lTensor M f) (LinearMap.lTensor M g)

    M is flat if and only if M ⊗ - is an exact functor. See Module.Flat.iff_lTensor_exact' to generalize the universe of N, N', N'' to any universe that is higher than R and M.

    theorem Module.Flat.iff_rTensor_exact' {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] [Small.{v', u} R] [Small.{v', v} M] :
    Module.Flat R M ∀ ⦃N N' N'' : Type v'⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : AddCommGroup N''] [inst_3 : Module R N] [inst_4 : Module R N'] [inst_5 : Module R N''] ⦃f : N →ₗ[R] N'⦄ ⦃g : N' →ₗ[R] N''⦄, Function.Exact f gFunction.Exact (LinearMap.rTensor M f) (LinearMap.rTensor M g)

    M is flat if and only if - ⊗ M is an exact functor. See Module.Flat.iff_rTensor_exact to specialize the universe of N, N', N'' to Type (max u v).

    theorem Module.Flat.iff_rTensor_exact {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] :
    Module.Flat R M ∀ ⦃N N' N'' : Type (max u v)⦄ [inst : AddCommGroup N] [inst_1 : AddCommGroup N'] [inst_2 : AddCommGroup N''] [inst_3 : Module R N] [inst_4 : Module R N'] [inst_5 : Module R N''] ⦃f : N →ₗ[R] N'⦄ ⦃g : N' →ₗ[R] N''⦄, Function.Exact f gFunction.Exact (LinearMap.rTensor M f) (LinearMap.rTensor M g)

    M is flat if and only if - ⊗ M is an exact functor. See Module.Flat.iff_rTensor_exact' to generalize the universe of N, N', N'' to any universe that is higher than R and M.