The module I ⧸ I ^ 2
#
In this file, we provide special API support for the module I ⧸ I ^ 2
. The official
definition is a quotient module of I
, but the alternative definition as an ideal of R ⧸ I ^ 2
is
also given, and the two are R
-equivalent as in Ideal.cotangentEquivIdeal
.
Additional support is also given to the cotangent space m ⧸ m ^ 2
of a local ring.
instance
Ideal.Cotangent.moduleOfTower
{R : Type u}
{S : Type v}
[CommRing R]
[CommSemiring S]
[Algebra S R]
(I : Ideal R)
:
instance
Ideal.Cotangent.isScalarTower
{R : Type u}
{S : Type v}
{S' : Type w}
[CommRing R]
[CommSemiring S]
[Algebra S R]
[CommSemiring S']
[Algebra S' R]
[Algebra S S']
[IsScalarTower S S' R]
(I : Ideal R)
:
IsScalarTower S S' I.Cotangent
instance
Ideal.instIsNoetherianCotangentOfSubtypeMem
{R : Type u}
[CommRing R]
(I : Ideal R)
[IsNoetherian R ↥I]
:
The inclusion map I ⧸ I ^ 2
to R ⧸ I ^ 2
.
Instances For
theorem
Ideal.isTorsionBySet_cotangent
{R : Type u}
[CommRing R]
(I : Ideal R)
:
Module.IsTorsionBySet R I.Cotangent ↑I
I ⧸ I ^ 2
as an ideal of R ⧸ I ^ 2
.
Instances For
@[deprecated Ideal.range_cotangentToQuotientSquare (since := "2025-01-04")]
Alias of Ideal.range_cotangentToQuotientSquare
.
The equivalence of the two definitions of I / I ^ 2
, either as the quotient of I
or the
ideal of R / I ^ 2
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
The quotient ring of I ⧸ I ^ 2
is R ⧸ I
.
Equations
Instances For
@[reducible, inline]
The A ⧸ I
-vector space I ⧸ I ^ 2
.
Instances For
instance
IsLocalRing.instIsScalarTowerResidueFieldCotangentSpace
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
:
IsScalarTower R (ResidueField R) (CotangentSpace R)
instance
IsLocalRing.instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
:
@[deprecated IsLocalRing.CotangentSpace (since := "2024-11-11")]
Alias of IsLocalRing.CotangentSpace
.
The A ⧸ I
-vector space I ⧸ I ^ 2
.
Instances For
@[deprecated IsLocalRing.subsingleton_cotangentSpace_iff (since := "2024-11-11")]
theorem
LocalRing.subsingleton_cotangentSpace_iff
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
:
@[deprecated IsLocalRing.CotangentSpace.map_eq_top_iff (since := "2024-11-11")]
theorem
LocalRing.map_eq_top_iff
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
{M : Submodule R ↥(IsLocalRing.maximalIdeal R)}
:
@[deprecated IsLocalRing.CotangentSpace.span_image_eq_top_iff (since := "2024-11-11")]
theorem
LocalRing.span_image_eq_top_iff
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
{s : Set ↥(IsLocalRing.maximalIdeal R)}
:
@[deprecated IsLocalRing.finrank_cotangentSpace_eq_zero_iff (since := "2024-11-11")]
theorem
LocalRing.finrank_cotangentSpace_eq_zero_iff
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
:
@[deprecated IsLocalRing.finrank_cotangentSpace_le_one_iff (since := "2024-11-11")]
theorem
LocalRing.finrank_cotangentSpace_le_one_iff
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
: