Documentation

Mathlib.RingTheory.Polynomial.Vieta

Vieta's Formula #

The main result is Multiset.prod_X_add_C_eq_sum_esymm, which shows that the product of linear terms X + λ with λ in a Multiset s is equal to a linear combination of the symmetric functions esymm s.

From this, we deduce MvPolynomial.prod_X_add_C_eq_sum_esymm which is the equivalent formula for the product of linear terms X + X i with i in a Fintype σ as a linear combination of the symmetric polynomials esymm σ R j.

For R be an integral domain (so that p.roots is defined for any p : R[X] as a multiset), we derive Polynomial.coeff_eq_esymm_roots_of_card, the relationship between the coefficients and the roots of p for a polynomial p that splits (i.e. having as many roots as its degree).

A sum version of Vieta's formula for Multiset: the product of the linear terms X + λ where λ runs through a multiset s is equal to a linear combination of the symmetric functions esymm s of the λ's .

theorem Multiset.prod_X_add_C_coeff {R : Type u_1} [CommSemiring R] (s : Multiset R) {k : } (h : k s.card) :
(map (fun (r : R) => Polynomial.X + Polynomial.C r) s).prod.coeff k = s.esymm (s.card - k)

Vieta's formula for the coefficients of the product of linear terms X + λ where λ runs through a multiset s : the kth coefficient is the symmetric function esymm (card s - k) s.

theorem Multiset.prod_X_add_C_coeff' {R : Type u_1} [CommSemiring R] {σ : Type u_2} (s : Multiset σ) (r : σR) {k : } (h : k s.card) :
(map (fun (i : σ) => Polynomial.X + Polynomial.C (r i)) s).prod.coeff k = (map r s).esymm (s.card - k)
theorem Finset.prod_X_add_C_coeff {R : Type u_1} [CommSemiring R] {σ : Type u_2} (s : Finset σ) (r : σR) {k : } (h : k s.card) :
(∏ is, (Polynomial.X + Polynomial.C (r i))).coeff k = tpowersetCard (s.card - k) s, it, r i
theorem Multiset.esymm_neg {R : Type u_1} [CommRing R] (s : Multiset R) (k : ) :
theorem Multiset.prod_X_sub_C_coeff {R : Type u_1} [CommRing R] (s : Multiset R) {k : } (h : k s.card) :
(map (fun (t : R) => Polynomial.X - Polynomial.C t) s).prod.coeff k = (-1) ^ (s.card - k) * s.esymm (s.card - k)

Vieta's formula for the coefficients and the roots of a polynomial over an integral domain with as many roots as its degree.

Vieta's formula for split polynomials over a field.

A sum version of Vieta's formula for MvPolynomial: viewing X i as variables, the product of linear terms λ + X i is equal to a linear combination of the symmetric polynomials esymm σ R j.