Documentation

Mathlib.SetTheory.ZFC.Basic

A model of ZFC #

In this file, we model Zermelo-Fraenkel set theory (+ Choice) using Lean's underlying type theory. We do this in four main steps:

The model #

Other definitions #

Notes #

To avoid confusion between the Lean Set and the ZFC Set, docstrings in this file refer to them respectively as "Set" and "ZFC set".

inductive PSet :
Type (u + 1)

The type of pre-sets in universe u. A pre-set is a family of pre-sets indexed by a type in Type u. The ZFC universe is defined as a quotient of this to ensure extensionality.

The underlying type of a pre-set

Equations

The underlying pre-set family of a pre-set

Equations
@[simp]
theorem PSet.mk_type (α : Type u_1) (A : αPSet.{u_1}) :
(mk α A).Type = α
@[simp]
theorem PSet.mk_func (α : Type u_1) (A : αPSet.{u_1}) :
(mk α A).Func = A
@[simp]
theorem PSet.eta (x : PSet.{u_1}) :
mk x.Type x.Func = x

Two pre-sets are extensionally equivalent if every element of the first family is extensionally equivalent to some element of the second family and vice-versa.

Equations
theorem PSet.equiv_iff {x : PSet.{u_1}} {y : PSet.{u_2}} :
x.Equiv y (∀ (i : x.Type), ∃ (j : y.Type), (x.Func i).Equiv (y.Func j)) ∀ (j : y.Type), ∃ (i : x.Type), (x.Func i).Equiv (y.Func j)
theorem PSet.Equiv.exists_left {x : PSet.{u_1}} {y : PSet.{u_2}} (h : x.Equiv y) (i : x.Type) :
∃ (j : y.Type), (x.Func i).Equiv (y.Func j)
theorem PSet.Equiv.exists_right {x : PSet.{u_1}} {y : PSet.{u_2}} (h : x.Equiv y) (j : y.Type) :
∃ (i : x.Type), (x.Func i).Equiv (y.Func j)
theorem PSet.Equiv.euc {x : PSet.{u_1}} {y : PSet.{u_2}} {z : PSet.{u_3}} :
x.Equiv yz.Equiv yx.Equiv z
theorem PSet.Equiv.symm {x : PSet.{u_1}} {y : PSet.{u_2}} :
x.Equiv yy.Equiv x
theorem PSet.Equiv.trans {x : PSet.{u_1}} {y : PSet.{u_2}} {z : PSet.{u_3}} (h1 : x.Equiv y) (h2 : y.Equiv z) :
x.Equiv z

A pre-set is a subset of another pre-set if every element of the first family is extensionally equivalent to some element of the second family.

Equations
def PSet.Mem (y x : PSet.{u}) :

x ∈ y as pre-sets if x is extensionally equivalent to a member of the family y.

Equations
theorem PSet.Mem.mk {α : Type u} (A : αPSet.{u}) (a : α) :
theorem PSet.func_mem (x : PSet.{u_1}) (i : x.Type) :
theorem PSet.Mem.ext {x y : PSet.{u}} :
(∀ (w : PSet.{u}), w x w y)x.Equiv y
theorem PSet.Mem.congr_right {x y : PSet.{u}} :
x.Equiv y∀ {w : PSet.{u}}, w x w y
theorem PSet.Mem.congr_left {x y : PSet.{u}} :
x.Equiv y∀ {w : PSet.{u}}, x w y w
theorem PSet.mem_of_subset {x y z : PSet.{u_1}} :
x yz xz y
theorem PSet.subset_iff {x y : PSet.{u_1}} :
x y ∀ ⦃z : PSet.{u_1}⦄, z xz y
theorem PSet.mem_wf :
WellFounded fun (x1 x2 : PSet.{u_1}) => x1 x2
theorem PSet.mem_asymm {x y : PSet.{u_1}} :
x yyx
theorem PSet.mem_irrefl (x : PSet.{u_1}) :
xx
theorem PSet.not_mem_of_subset {x y : PSet.{u_1}} (h : x y) :
yx

Convert a pre-set to a Set of pre-sets.

Equations
@[simp]

A nonempty set is one that contains some element.

Equations

Two pre-sets are equivalent iff they have the same members.

@[simp]
theorem PSet.not_mem_empty (x : PSet.{u}) :
x
@[simp]

Insert an element into a pre-set

Equations
@[simp]
@[simp]

The n-th von Neumann ordinal

Equations

The von Neumann ordinal ω

Equations

The pre-set separation operation {x ∈ a | p x}

Equations
theorem PSet.mem_sep {p : PSet.{u_1}Prop} (H : ∀ (x y : PSet.{u_1}), x.Equiv yp xp y) {x y : PSet.{u_1}} :

The pre-set powerset operator

Equations

The pre-set union operator

Equations

The pre-set union operator

Equations
@[simp]
theorem PSet.mem_sUnion {x y : PSet.{u}} :
y ⋃₀ x zx, y z

The image of a function from pre-sets to pre-sets.

Equations
theorem PSet.mem_image {f : PSet.{u}PSet.{u}} (H : ∀ (x y : PSet.{u}), x.Equiv y(f x).Equiv (f y)) {x y : PSet.{u}} :
y image f x zx, y.Equiv (f z)

Universe lift operation

Equations

Embedding of one universe in another

Equations
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]

Function equivalence is defined so that f ~ g iff ∀ x y, x ~ y → f x ~ g y. This extends to equivalence of n-ary functions.

Equations
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
def PSet.Resp (n : ) :
Type (u + 1)

resp n is the collection of n-ary functions on PSet that respect equivalence, i.e. when the inputs are equivalent the output is as well.

Equations
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
Equations
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
def PSet.Resp.f {n : } (f : Resp (n + 1)) (x : PSet.{u_1}) :

The n-ary image of a (n + 1)-ary function respecting equivalence as a function respecting equivalence.

Equations
  • f.f x = f x,
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
def PSet.Resp.Equiv {n : } (a b : Resp n) :

Function equivalence for functions respecting equivalence. See PSet.Arity.Equiv.

Equations
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
theorem PSet.Resp.Equiv.refl {n : } (a : Resp n) :
a.Equiv a
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
theorem PSet.Resp.Equiv.euc {n : } {a b c : Resp n} :
a.Equiv bc.Equiv ba.Equiv c
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
theorem PSet.Resp.Equiv.symm {n : } {a b : Resp n} :
a.Equiv bb.Equiv a
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
theorem PSet.Resp.Equiv.trans {n : } {x y z : Resp n} (h1 : x.Equiv y) (h2 : y.Equiv z) :
x.Equiv z
@[deprecated "No deprecation message was provided." (since := "2024-09-02")]
instance PSet.Resp.setoid {n : } :
Equations
def ZFSet :
Type (u + 1)

The ZFC universe of sets consists of the type of pre-sets, quotiented by extensional equivalence.

Equations

Turns a pre-set into a ZFC set.

Equations
@[simp]
theorem ZFSet.mk_eq (x : PSet.{u_1}) :
@[simp]
class ZFSet.Definable (n : ) (f : (Fin nZFSet.{u})ZFSet.{u}) :
Type (u + 1)

A set function is "definable" if it is the image of some n-ary PSet function. This isn't exactly definability, but is useful as a sufficient condition for functions that have a computable image.

Instances
    @[reducible, inline]
    abbrev ZFSet.Definable₁ (f : ZFSet.{u}ZFSet.{u}) :
    Type (u + 1)

    An abbrev of ZFSet.Definable for unary functions.

    Equations
    @[reducible, inline]
    abbrev ZFSet.Definable₁.mk {f : ZFSet.{u}ZFSet.{u}} (out : PSet.{u}PSet.{u}) (mk_out : ∀ (x : PSet.{u}), out x = f x) :

    A simpler constructor for ZFSet.Definable₁.

    Equations
    @[reducible, inline]

    Turns a unary definable function into a unary PSet function.

    Equations
    @[reducible, inline]
    abbrev ZFSet.Definable₂ (f : ZFSet.{u}ZFSet.{u}ZFSet.{u}) :
    Type (u + 1)

    An abbrev of ZFSet.Definable for binary functions.

    Equations
    @[reducible, inline]
    abbrev ZFSet.Definable₂.mk {f : ZFSet.{u}ZFSet.{u}ZFSet.{u}} (out : PSet.{u}PSet.{u}PSet.{u}) (mk_out : ∀ (x y : PSet.{u}), out x y = f x y) :

    A simpler constructor for ZFSet.Definable₂.

    Equations
    @[reducible, inline]

    Turns a binary definable function into a binary PSet function.

    Equations
    instance ZFSet.instDefinableOfDefinable₁ (f : ZFSet.{u_1}ZFSet.{u_1}) [Definable₁ f] (n : ) (g : (Fin nZFSet.{u_1})ZFSet.{u_1}) [Definable n g] :
    Definable n fun (s : Fin nZFSet.{u_1}) => f (g s)
    Equations
    instance ZFSet.instDefinableOfDefinable₂ (f : ZFSet.{u_1}ZFSet.{u_1}ZFSet.{u_1}) [Definable₂ f] (n : ) (g₁ g₂ : (Fin nZFSet.{u_1})ZFSet.{u_1}) [Definable n g₁] [Definable n g₂] :
    Definable n fun (s : Fin nZFSet.{u_1}) => f (g₁ s) (g₂ s)
    Equations
    instance ZFSet.instDefinable (n : ) (i : Fin n) :
    Definable n fun (s : Fin nZFSet.{u_1}) => s i
    Equations
    theorem ZFSet.Definable.out_equiv {n : } (f : (Fin nZFSet.{u})ZFSet.{u}) [Definable n f] {xs ys : Fin nPSet.{u}} (h : ∀ (i : Fin n), xs i ys i) :
    out f xs out f ys
    theorem ZFSet.Definable₂.out_equiv (f : ZFSet.{u}ZFSet.{u}ZFSet.{u}) [Definable₂ f] {x₁ y₁ x₂ y₂ : PSet.{u}} (h₁ : x₁ y₁) (h₂ : x₂ y₂) :
    out f x₁ x₂ out f y₁ y₂
    @[deprecated "No deprecation message was provided." (since := "2024-09-02")]
    def PSet.Resp.evalAux {n : } :
    { f : Resp nFunction.OfArity ZFSet.{u} ZFSet.{u} n // ∀ (a b : Resp n), a.Equiv bf a = f b }

    Helper function for PSet.eval.

    Equations
    @[deprecated "No deprecation message was provided." (since := "2024-09-02")]

    An equivalence-respecting function yields an n-ary ZFC set function.

    Equations
    @[deprecated "No deprecation message was provided." (since := "2024-09-02")]
    theorem PSet.Resp.eval_val {n : } {f : Resp (n + 1)} {x : PSet.{u_1}} :
    eval (n + 1) f x = eval n (f.f x)
    @[deprecated "No deprecation message was provided." (since := "2024-09-02")]
    class inductive PSet.Definable (n : ) :

    A set function is "definable" if it is the image of some n-ary pre-set function. This isn't exactly definability, but is useful as a sufficient condition for functions that have a computable image.

    Instances
      @[deprecated "No deprecation message was provided." (since := "2024-09-02")]

      The evaluation of a function respecting equivalence is definable, by that same function.

      Equations
      @[deprecated "No deprecation message was provided." (since := "2024-09-02")]

      Turns a definable function into a function that respects equivalence.

      Equations
      @[deprecated "No deprecation message was provided." (since := "2024-09-02")]
      @[deprecated "No deprecation message was provided." (since := "2024-09-02")]

      All functions are classically definable.

      Equations
      noncomputable def Classical.allZFSetDefinable {n : } (F : (Fin nZFSet.{u})ZFSet.{u}) :

      All functions are classically definable.

      Equations
      theorem ZFSet.eq {x y : PSet.{u_1}} :
      mk x = mk y x.Equiv y
      theorem ZFSet.sound {x y : PSet.{u_1}} (h : x.Equiv y) :
      mk x = mk y
      theorem ZFSet.exact {x y : PSet.{u_1}} :
      mk x = mk yx.Equiv y
      @[simp, deprecated "No deprecation message was provided." (since := "2024-09-02")]
      theorem ZFSet.eval_mk {n : } {f : PSet.Resp (n + 1)} {x : PSet.{u_1}} :

      The membership relation for ZFC sets is inherited from the membership relation for pre-sets.

      Equations
      @[simp]
      theorem ZFSet.mk_mem_iff {x y : PSet.{u_1}} :
      mk x mk y x y

      Convert a ZFC set into a Set of ZFC sets

      Equations
      @[simp]

      A nonempty set is one that contains some element.

      Equations

      x ⊆ y as ZFC sets means that all members of x are members of y.

      Equations
      theorem ZFSet.subset_def {x y : ZFSet.{u}} :
      x y ∀ ⦃z : ZFSet.{u}⦄, z xz y
      @[simp]
      theorem ZFSet.subset_iff {x y : PSet.{u_1}} :
      mk x mk y x y
      theorem ZFSet.ext {x y : ZFSet.{u}} :
      (∀ (z : ZFSet.{u}), z x z y)x = y
      @[simp]

      The empty ZFC set

      Equations
      @[simp]
      theorem ZFSet.not_mem_empty (x : ZFSet.{u}) :
      x
      @[simp]
      theorem ZFSet.eq_empty (x : ZFSet.{u}) :
      x = ∀ (y : ZFSet.{u}), yx
      @[simp]
      @[simp]
      @[simp]
      theorem ZFSet.mem_pair {x y z : ZFSet.{u}} :
      @[simp]
      @[simp]
      @[simp]

      omega is the first infinite von Neumann ordinal

      Equations
      @[simp]

      {x ∈ a | p x} is the set of elements in a satisfying p

      Equations
      @[simp]
      theorem ZFSet.mem_sep {p : ZFSet.{u}Prop} {x y : ZFSet.{u}} :
      @[simp]

      The powerset operation, the collection of subsets of a ZFC set

      Equations
      theorem ZFSet.sUnion_lem {α β : Type u} (A : αPSet.{u}) (B : βPSet.{u}) (αβ : ∀ (a : α), ∃ (b : β), (A a).Equiv (B b)) (a : (⋃₀ PSet.mk α A).Type) :
      ∃ (b : (⋃₀ PSet.mk β B).Type), ((⋃₀ PSet.mk α A).Func a).Equiv ((⋃₀ PSet.mk β B).Func b)

      The union operator, the collection of elements of elements of a ZFC set

      Equations

      The union operator, the collection of elements of elements of a ZFC set

      Equations

      The intersection operator, the collection of elements in all of the elements of a ZFC set. We define ⋂₀ ∅ = ∅.

      Equations

      The intersection operator, the collection of elements in all of the elements of a ZFC set. We define ⋂₀ ∅ = ∅.

      Equations
      @[simp]
      theorem ZFSet.mem_sUnion {x y : ZFSet.{u}} :
      y ⋃₀ x zx, y z
      theorem ZFSet.mem_sInter {x y : ZFSet.{u_1}} (h : x.Nonempty) :
      y ⋂₀ x zx, y z
      theorem ZFSet.mem_of_mem_sInter {x y z : ZFSet.{u_1}} (hy : y ⋂₀ x) (hz : z x) :
      theorem ZFSet.mem_sUnion_of_mem {x y z : ZFSet.{u_1}} (hy : y z) (hz : z x) :
      theorem ZFSet.not_mem_sInter_of_not_mem {x y z : ZFSet.{u_1}} (hy : yz) (hz : z x) :
      y⋂₀ x
      @[simp]

      The binary union operation

      Equations

      The binary intersection operation

      Equations

      The set difference operation

      Equations
      @[simp]
      @[simp]
      @[simp]
      @[simp]
      theorem ZFSet.mem_diff {x y z : ZFSet.{u}} :
      z x \ y z x zy
      @[simp]
      theorem ZFSet.mem_wf :
      WellFounded fun (x1 x2 : ZFSet.{u_1}) => x1 x2
      theorem ZFSet.inductionOn {p : ZFSet.{u_1}Prop} (x : ZFSet.{u_1}) (h : ∀ (x : ZFSet.{u_1}), (∀ yx, p y)p x) :
      p x

      Induction on the relation.

      theorem ZFSet.mem_asymm {x y : ZFSet.{u_1}} :
      x yyx
      theorem ZFSet.mem_irrefl (x : ZFSet.{u_1}) :
      xx
      theorem ZFSet.not_mem_of_subset {x y : ZFSet.{u_1}} (h : x y) :
      yx
      theorem ZFSet.regularity (x : ZFSet.{u}) (h : x ) :
      yx, x y =

      The image of a (definable) ZFC set function

      Equations
      @[simp]
      theorem ZFSet.mem_image {f : ZFSet.{u}ZFSet.{u}} [Definable₁ f] {x y : ZFSet.{u}} :
      y image f x zx, f z = y
      noncomputable def ZFSet.range {α : Type u_1} [Small.{u, u_1} α] (f : αZFSet.{u}) :

      The range of a type-indexed family of sets.

      Equations
      @[simp]
      theorem ZFSet.mem_range {α : Type u_1} [Small.{u, u_1} α] {f : αZFSet.{u}} {x : ZFSet.{u}} :
      @[simp]
      theorem ZFSet.toSet_range {α : Type u_1} [Small.{u, u_1} α] (f : αZFSet.{u}) :

      Kuratowski ordered pair

      Equations
      @[simp]

      A subset of pairs {(a, b) ∈ x × y | p a b}

      Equations
      @[simp]
      theorem ZFSet.mem_pairSep {p : ZFSet.{u}ZFSet.{u}Prop} {x y z : ZFSet.{u}} :
      z pairSep p x y ax, by, z = a.pair b p a b
      @[simp]
      theorem ZFSet.pair_inj {x y x' y' : ZFSet.{u_1}} :
      x.pair y = x'.pair y' x = x' y = y'

      The cartesian product, {(a, b) | a ∈ x, b ∈ y}

      Equations
      @[simp]
      theorem ZFSet.mem_prod {x y z : ZFSet.{u}} :
      z x.prod y ax, by, z = a.pair b
      def ZFSet.IsFunc (x y f : ZFSet.{u}) :

      isFunc x y f is the assertion that f is a subset of x × y which relates to each element of x a unique element of y, so that we can consider f as a ZFC function x → y.

      Equations

      funs x y is y ^ x, the set of all set functions x → y

      Equations
      @[simp]
      theorem ZFSet.mem_funs {x y f : ZFSet.{u}} :
      f x.funs y x.IsFunc y f

      Graph of a function: map f x is the ZFC function which maps a ∈ x to f a

      Equations
      @[simp]
      theorem ZFSet.mem_map {f : ZFSet.{u_1}ZFSet.{u_1}} [Definable₁ f] {x y : ZFSet.{u_1}} :
      y map f x zx, z.pair (f z) = y
      @[simp]
      theorem ZFSet.map_isFunc {f : ZFSet.{u_1}ZFSet.{u_1}} [Definable₁ f] {x y : ZFSet.{u_1}} :
      x.IsFunc y (map f x) zx, f z y
      @[irreducible]

      Given a predicate p on ZFC sets. Hereditarily p x means that x has property p and the members of x are all Hereditarily p.

      Equations
      theorem ZFSet.Hereditarily.def {p : ZFSet.{u}Prop} {x : ZFSet.{u}} :
      Hereditarily p xp x yx, Hereditarily p y

      Alias of the forward direction of ZFSet.hereditarily_iff.

      theorem ZFSet.Hereditarily.self {p : ZFSet.{u}Prop} {x : ZFSet.{u}} (h : Hereditarily p x) :
      p x
      theorem ZFSet.Hereditarily.mem {p : ZFSet.{u}Prop} {x y : ZFSet.{u}} (h : Hereditarily p x) (hy : y x) :
      def Class :
      Type (u_1 + 1)

      The collection of all classes. We define Class as Set ZFSet, as this allows us to get many instances automatically. However, in practice, we treat it as (the definitionally equal) ZFSet → Prop. This means, the preferred way to state that x : ZFSet belongs to A : Class is to write A x.

      Equations

      {x ∈ A | p x} is the class of elements in A satisfying p

      Equations
      theorem Class.ext {x y : Class.{u}} :
      (∀ (z : ZFSet.{u}), x z y z)x = y

      Coerce a ZFC set into a class

      Equations

      The universal class

      Equations

      Assert that A is a ZFC set satisfying B

      Equations
      def Class.Mem (B A : Class.{u}) :

      A ∈ B if A is a ZFC set which satisfies B

      Equations
      theorem Class.mem_def (A B : Class.{u}) :
      A B ∃ (x : ZFSet.{u}), x = A B x
      @[simp]
      theorem Class.not_mem_empty (x : Class.{u}) :
      x
      @[simp]
      @[simp]
      theorem Class.mem_univ {A : Class.{u}} :
      @[simp]
      theorem Class.eq_univ_of_forall {A : Class.{u}} :
      (∀ (x : ZFSet.{u}), A x)A = univ
      theorem Class.mem_wf :
      WellFounded fun (x1 x2 : Class.{u}) => x1 x2
      theorem Class.mem_asymm {x y : Class.{u_1}} :
      x yyx
      theorem Class.mem_irrefl (x : Class.{u_1}) :
      xx

      There is no universal set. This is stated as univuniv, meaning that univ (the class of all sets) is proper (does not belong to the class of all sets).

      Convert a conglomerate (a collection of classes) into a class

      Equations

      Convert a class into a conglomerate (a collection of classes)

      Equations

      The power class of a class is the class of all subclasses that are ZFC sets

      Equations

      The union of a class is the class of all members of ZFC sets in the class

      Equations

      The union of a class is the class of all members of ZFC sets in the class

      Equations

      The intersection of a class is the class of all members of ZFC sets in the class

      Equations

      The intersection of a class is the class of all members of ZFC sets in the class

      Equations
      theorem Class.ofSet.inj {x y : ZFSet.{u}} (h : x = y) :
      x = y
      @[simp]
      theorem Class.toSet_of_ZFSet (A : Class.{u}) (x : ZFSet.{u}) :
      A.ToSet x A x
      @[simp]
      theorem Class.coe_mem {x : ZFSet.{u}} {A : Class.{u}} :
      @[simp]
      @[simp]
      theorem Class.coe_subset (x y : ZFSet.{u}) :
      @[simp]
      @[simp]
      theorem Class.coe_insert (x y : ZFSet.{u}) :
      (insert x y) = insert x y
      @[simp]
      theorem Class.coe_union (x y : ZFSet.{u}) :
      @[simp]
      theorem Class.coe_inter (x y : ZFSet.{u}) :
      @[simp]
      theorem Class.coe_diff (x y : ZFSet.{u}) :
      (x \ y) = x \ y
      @[simp]
      @[simp]
      @[simp]
      theorem Class.mem_sUnion {x y : Class.{u}} :
      y ⋃₀ x zx, y z
      theorem Class.sInter_apply {x : Class.{u}} {y : ZFSet.{u}} :
      (⋂₀ x) y ∀ (z : ZFSet.{u}), x zy z
      @[simp]
      theorem Class.coe_sInter {x : ZFSet.{u}} (h : x.Nonempty) :
      theorem Class.mem_of_mem_sInter {x y z : Class.{u_1}} (hy : y ⋂₀ x) (hz : z x) :
      theorem Class.mem_sInter {x y : Class.{u}} (h : Set.Nonempty x) :
      y ⋂₀ x zx, y z

      An induction principle for sets. If every subset of a class is a member, then the class is universal.

      The definite description operator, which is {x} if {y | A y} = {x} and otherwise.

      Equations
      theorem Class.iota_val (A : Class.{u_1}) (x : ZFSet.{u_1}) (H : ∀ (y : ZFSet.{u_1}), A y y = x) :
      A.iota = x

      Unlike the other set constructors, the iota definite descriptor is a set for any set input, but not constructively so, so there is no associated ClassSet function.

      Function value

      Equations
      @[simp]
      theorem ZFSet.map_fval {f : ZFSet.{u}ZFSet.{u}} [Definable₁ f] {x y : ZFSet.{u}} (h : y x) :
      (map f x) y = (f y)
      noncomputable def ZFSet.choice (x : ZFSet.{u}) :

      A choice function on the class of nonempty ZFC sets.

      Equations
      theorem ZFSet.choice_mem_aux (x : ZFSet.{u}) (h : x) (y : ZFSet.{u}) (yx : y x) :
      theorem ZFSet.choice_isFunc (x : ZFSet.{u}) (h : x) :
      theorem ZFSet.choice_mem (x : ZFSet.{u}) (h : x) (y : ZFSet.{u}) (yx : y x) :
      x.choice y y

      ZFSet.toSet as an equivalence.

      Equations
      • One or more equations did not get rendered due to their size.