Beck-Chevalley natural transformations and natural isomorphisms #
theorem
CategoryTheory.Over.mapSquare_eq
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
:
def
CategoryTheory.Over.mapSquareIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
:
The Beck Chevalley transformations are iterated mates of this isomorphism.
Equations
- CategoryTheory.Over.mapSquareIso f g h k w = CategoryTheory.eqToIso ⋯
Instances For
def
CategoryTheory.Over.mapSquareIso'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
:
Equations
- CategoryTheory.Over.mapSquareIso' f g h k w = ⋯.mpr (CategoryTheory.Iso.refl ((Σ_ h).comp (Σ_ k)))
Instances For
def
CategoryTheory.Over.pullbackBeckChevalleyNatTrans
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
:
The Beck-Chevalley natural transformation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Over.pullbackBeckChevalleyOfMap
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{X : C}
{Y : C}
(f : X ⟶ Y)
:
Equations
- CategoryTheory.Over.pullbackBeckChevalleyOfMap f = (CategoryTheory.mateEquiv (CategoryTheory.Over.mapPullbackAdj f) CategoryTheory.Adjunction.id) (⋯.mp (CategoryTheory.Over.mapForgetIso f).inv)
Instances For
def
CategoryTheory.Over.pullbackSquareIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
:
The conjugate isomorphism between the pullbacks along a commutative square.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Over.pushforwardBeckChevalleyNatTrans
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
:
The Beck-Chevalley natural transformations in a square of pullbacks and pushforwards.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Over.pushforwardSquareIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
(fexp : CartesianExponentiable f)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
(kexp : CartesianExponentiable k)
:
The conjugate isomorphism between the pushforwards along a commutative square.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.mapPullbackAdj.counit.app_pullback.fst
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{X : C}
{Y : C}
(f : X ⟶ Y)
(y : CategoryTheory.Over Y)
:
((CategoryTheory.Over.mapPullbackAdj f).counit.app y).left = CategoryTheory.Limits.pullback.fst y.hom f
Calculating the counit components of mapAdjunction.
def
CategoryTheory.pullbackNatTrans.app.map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
(y : CategoryTheory.Over Y)
:
Equations
- CategoryTheory.pullbackNatTrans.app.map f g h k w y = CategoryTheory.Limits.pullback.map y.hom h (CategoryTheory.CategoryStruct.comp y.hom k) g (CategoryTheory.CategoryStruct.id y.left) f k ⋯ ⋯
Instances For
theorem
CategoryTheory.pullbackBeckChevalleyComponent_pullbackMap
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryTheory.CategoryStruct.comp f g = CategoryTheory.CategoryStruct.comp h k)
(y : CategoryTheory.Over Y)
:
(Σ_ X).map ((CategoryTheory.Over.pullbackBeckChevalleyNatTrans f g h k w).app y) = CategoryTheory.pullbackNatTrans.app.map f g h k w y
theorem
CategoryTheory.pullbackNatTrans_of_IsPullback_component_is_iso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : CategoryTheory.IsPullback f h g k)
(y : CategoryTheory.Over Y)
:
CategoryTheory.IsIso ((Σ_ X).map ((CategoryTheory.Over.pullbackBeckChevalleyNatTrans f g h k ⋯).app y))
instance
CategoryTheory.pullbackBeckChevalleyNatTrans_of_IsPullback_is_iso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : CategoryTheory.IsPullback f h g k)
:
The pullback Beck-Chevalley natural transformation of a pullback square is an isomorphism.
Equations
- ⋯ = ⋯
instance
CategoryTheory.pushforwardBeckChevalleyNatTrans_of_IsPullback_is_iso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : CategoryTheory.IsPullback f h g k)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
:
CategoryTheory.IsIso (CategoryTheory.Over.pushforwardBeckChevalleyNatTrans f g h k ⋯ gexp hexp)
The pushforward Beck-Chevalley natural transformation of a pullback square is an isomorphism.
Equations
- ⋯ = ⋯
instance
CategoryTheory.pushforwardBeckChevalleyNatTrans_of_isPullback_isIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasPullbacks C]
{W : C}
{X : C}
{Y : C}
{Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : CategoryTheory.IsPullback f h g k)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
:
CategoryTheory.IsIso (CategoryTheory.Over.pushforwardBeckChevalleyNatTrans f g h k ⋯ gexp hexp)
The pushforward Beck-Chevalley natural transformation of a pullback square is an isomorphism.
Equations
- ⋯ = ⋯