Beck-Chevalley natural transformations and natural isomorphisms #
def
CategoryTheory.Over.mapSquareIso
{C : Type u}
[Category.{v, u} C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
:
The Beck Chevalley transformations are iterated mates of this isomorphism.
Instances For
def
CategoryTheory.Over.mapSquareIso'
{C : Type u}
[Category.{v, u} C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
:
Equations
Instances For
def
CategoryTheory.Over.pullbackBeckChevalleyNatTrans
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
:
The Beck-Chevalley natural transformation.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Over.pullbackBeckChevalleyOfMap
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{X Y : C}
(f : X ⟶ Y)
:
Equations
Instances For
def
CategoryTheory.Over.pullbackSquareIso
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
:
The conjugate isomorphism between the pullbacks along a commutative square.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Over.pushforwardBeckChevalleyNatTrans
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
:
The Beck-Chevalley natural transformations in a square of pullbacks and pushforwards.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Over.pushforwardSquareIso
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
(fexp : CartesianExponentiable f)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
(kexp : CartesianExponentiable k)
:
The conjugate isomorphism between the pushforwards along a commutative square.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.mapPullbackAdj.counit.app_pullback.fst
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{X Y : C}
(f : X ⟶ Y)
(y : Over Y)
:
Calculating the counit components of mapAdjunction.
def
CategoryTheory.pullbackNatTrans.app.map
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
(y : Over Y)
:
Equations
Instances For
theorem
CategoryTheory.pullbackBeckChevalleyComponent_pullbackMap
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(w : CategoryStruct.comp f g = CategoryStruct.comp h k)
(y : Over Y)
:
(Σ_ X).map ((Over.pullbackBeckChevalleyNatTrans f g h k w).app y) = pullbackNatTrans.app.map f g h k w y
theorem
CategoryTheory.pullbackNatTrans_of_IsPullback_component_is_iso
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : IsPullback f h g k)
(y : Over Y)
:
instance
CategoryTheory.pullbackBeckChevalleyNatTrans_of_IsPullback_is_iso
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : IsPullback f h g k)
:
IsIso (Over.pullbackBeckChevalleyNatTrans f g h k ⋯)
The pullback Beck-Chevalley natural transformation of a pullback square is an isomorphism.
instance
CategoryTheory.pushforwardBeckChevalleyNatTrans_of_IsPullback_is_iso
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : IsPullback f h g k)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
:
IsIso (Over.pushforwardBeckChevalleyNatTrans f g h k ⋯ gexp hexp)
The pushforward Beck-Chevalley natural transformation of a pullback square is an isomorphism.
instance
CategoryTheory.pushforwardBeckChevalleyNatTrans_of_isPullback_isIso
{C : Type u}
[Category.{v, u} C]
[Limits.HasPullbacks C]
{W X Y Z : C}
(f : W ⟶ X)
(g : X ⟶ Z)
(h : W ⟶ Y)
(k : Y ⟶ Z)
(pb : IsPullback f h g k)
(gexp : CartesianExponentiable g)
(hexp : CartesianExponentiable h)
:
IsIso (Over.pushforwardBeckChevalleyNatTrans f g h k ⋯ gexp hexp)
The pushforward Beck-Chevalley natural transformation of a pullback square is an isomorphism.