This module provides a basic theory around the naive AIG node creation functions. It is mostly fundamental work for the cached versions later on.
@[simp]
theorem
Std.Sat.AIG.Ref.gate_cast
{α : Type}
[Hashable α]
[DecidableEq α]
{aig1 aig2 : AIG α}
(ref : aig1.Ref)
(h : aig1.decls.size ≤ aig2.decls.size)
:
@[simp]
theorem
Std.Sat.AIG.Ref.cast_eq
{α : Type}
[Hashable α]
[DecidableEq α]
{aig1 aig2 : AIG α}
(ref : aig1.Ref)
(h : aig1.decls.size ≤ aig2.decls.size)
:
@[simp]
theorem
Std.Sat.AIG.Fanin.ref_cast
{α : Type}
[Hashable α]
[DecidableEq α]
{aig1 aig2 : AIG α}
(fanin : aig1.Fanin)
(h : aig1.decls.size ≤ aig2.decls.size)
:
@[simp]
theorem
Std.Sat.AIG.Fanin.inv_cast
{α : Type}
[Hashable α]
[DecidableEq α]
{aig1 aig2 : AIG α}
(fanin : aig1.Fanin)
(h : aig1.decls.size ≤ aig2.decls.size)
:
@[simp]
theorem
Std.Sat.AIG.GateInput.lhs_cast
{α : Type}
[Hashable α]
[DecidableEq α]
{aig1 aig2 : AIG α}
(input : aig1.GateInput)
(h : aig1.decls.size ≤ aig2.decls.size)
:
@[simp]
theorem
Std.Sat.AIG.GateInput.rhs_cast
{α : Type}
[Hashable α]
[DecidableEq α]
{aig1 aig2 : AIG α}
(input : aig1.GateInput)
(h : aig1.decls.size ≤ aig2.decls.size)
:
@[simp]
theorem
Std.Sat.AIG.BinaryInput.each_cast
{α : Type}
[Hashable α]
[DecidableEq α]
{aig1 aig2 : AIG α}
(lhs rhs : aig1.Ref)
(h1 h2 : aig1.decls.size ≤ aig2.decls.size)
:
theorem
Std.Sat.AIG.mkGate_le_size
{α : Type}
[Hashable α]
[DecidableEq α]
(aig : AIG α)
(input : aig.GateInput)
:
AIG.mkGate
never shrinks the underlying AIG.
@[simp]
theorem
Std.Sat.AIG.mkAtom_le_size
{α : Type}
[Hashable α]
[DecidableEq α]
(aig : AIG α)
(var : α)
:
AIG.mkAtom
never shrinks the underlying AIG.
instance
Std.Sat.AIG.instLawfulOperatorMkAtom
{α : Type}
[Hashable α]
[DecidableEq α]
:
LawfulOperator α (fun (x : AIG α) => α) mkAtom
theorem
Std.Sat.AIG.mkConst_le_size
{α : Type}
[Hashable α]
[DecidableEq α]
(aig : AIG α)
(val : Bool)
:
AIG.mkConst
never shrinks the underlying AIG.
instance
Std.Sat.AIG.instLawfulOperatorBoolMkConst
{α : Type}
[Hashable α]
[DecidableEq α]
:
LawfulOperator α (fun (x : AIG α) => Bool) mkConst
theorem
Std.Sat.AIG.denote_idx_gate
{α : Type}
[Hashable α]
[DecidableEq α]
{start : Nat}
{assign : α → Bool}
{lhs : Nat}
{linv : Bool}
{rhs : Nat}
{rinv : Bool}
{aig : AIG α}
{hstart : start < aig.decls.size}
(h : aig.decls[start] = Decl.gate lhs rhs linv rinv)
:
If an index contains a Decl.gate
we know how to denote it.
theorem
Std.Sat.AIG.idx_trichotomy
{α : Type}
[Hashable α]
[DecidableEq α]
{start : Nat}
(aig : AIG α)
(hstart : start < aig.decls.size)
{prop : Prop}
(hconst : ∀ (b : Bool), aig.decls[start] = Decl.const b → prop)
(hatom : ∀ (a : α), aig.decls[start] = Decl.atom a → prop)
(hgate : ∀ (lhs rhs : Nat) (linv rinv : Bool), aig.decls[start] = Decl.gate lhs rhs linv rinv → prop)
:
prop
theorem
Std.Sat.AIG.denote_idx_trichotomy
{α : Type}
[Hashable α]
[DecidableEq α]
{start : Nat}
{assign : α → Bool}
{res : Bool}
{aig : AIG α}
{hstart : start < aig.decls.size}
(hconst :
∀ (b : Bool),
aig.decls[start] = Decl.const b → ⟦assign, { aig := aig, ref := { gate := start, hgate := hstart } }⟧ = res)
(hatom :
∀ (a : α), aig.decls[start] = Decl.atom a → ⟦assign, { aig := aig, ref := { gate := start, hgate := hstart } }⟧ = res)
(hgate :
∀ (lhs rhs : Nat) (linv rinv : Bool),
aig.decls[start] = Decl.gate lhs rhs linv rinv →
⟦assign, { aig := aig, ref := { gate := start, hgate := hstart } }⟧ = res)
:
theorem
Std.Sat.AIG.of_isConstant
{α : Type}
[Hashable α]
[DecidableEq α]
{aig : AIG α}
{assign : α → Bool}
{ref : aig.Ref}
{b : Bool}
:
aig.isConstant ref b = true → ⟦assign, { aig := aig, ref := ref }⟧ = b