Documentation

GroupoidModel.FibrationForMathlib.FibredCats.CartLift

Cartesian Lifts #

For a functor P : E ⥤ C, the structure BasedLift provides the type of lifts of a given morphism in the base with fixed source and target in the fibers of P: More precisely, BasedLift P f is the type of morphisms in the domain category E which are lifts of f.

We provide various useful constructors:

There are also typeclasses CartesianBasedLift and CoCartesianBasedLift carrying data witnessing that a given based-lift is cartesian and cocartesian, respectively.

For a functor P : E ⥤ C, we provide the class CartMor of cartesian morphisms in E. The type CartMor Pis defined in terms of the predicate isCartesianMorphism.

We prove the following closure properties of the class CartMor of cartesian morphisms:

instCatCart provides a category instance for the class of cartesian morphisms, and Cart.forget provides the forgetful functor from the category of cartesian morphisms to the domain category E.

Finally, We provide the following notations:

theorem CategoryTheory.BasedLift.ext_iff {C : Type u_1} {E : Type u_2} :
∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} {c d : C} {f : c d} {src : P ⁻¹ c} {tgt : P ⁻¹ d} (x y : CategoryTheory.BasedLift P f src tgt), x = y x.hom = y.hom
theorem CategoryTheory.BasedLift.ext {C : Type u_1} {E : Type u_2} :
∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} {c d : C} {f : c d} {src : P ⁻¹ c} {tgt : P ⁻¹ d} (x y : CategoryTheory.BasedLift P f src tgt), x.hom = y.homx = y
structure CategoryTheory.BasedLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] (P : CategoryTheory.Functor E C) {c : C} {d : C} (f : c d) (src : P ⁻¹ c) (tgt : P ⁻¹ d) :
Type u_4

The type of lifts of a given morphism in the base with fixed source and target in the fibers of the domain and codomain respectively.

Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Lift.ext {C : Type u_1} {E : Type u_2} :
      ∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} {c d : C} {f : c d} {tgt : P ⁻¹ d} (x y : CategoryTheory.Lift P f tgt), x.src = y.srcHEq x.based_lift y.based_liftx = y
      theorem CategoryTheory.Lift.ext_iff {C : Type u_1} {E : Type u_2} :
      ∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} {c d : C} {f : c d} {tgt : P ⁻¹ d} (x y : CategoryTheory.Lift P f tgt), x = y x.src = y.src HEq x.based_lift y.based_lift
      structure CategoryTheory.Lift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] (P : CategoryTheory.Functor E C) {c : C} {d : C} (f : c d) (tgt : P ⁻¹ d) :
      Type (max u_2 u_4)

      A lift of a morphism in the base with a fixed target in the fiber of the codomain

      Instances For
        theorem CategoryTheory.CoLift.ext {C : Type u_1} {E : Type u_2} :
        ∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} {c d : C} {f : c d} {src : P ⁻¹ c} (x y : CategoryTheory.CoLift P f src), x.tgt = y.tgtHEq x.based_colift y.based_coliftx = y
        theorem CategoryTheory.CoLift.ext_iff {C : Type u_1} {E : Type u_2} :
        ∀ {inst : CategoryTheory.Category.{u_3, u_1} C} {inst_1 : CategoryTheory.Category.{u_4, u_2} E} {P : CategoryTheory.Functor E C} {c d : C} {f : c d} {src : P ⁻¹ c} (x y : CategoryTheory.CoLift P f src), x = y x.tgt = y.tgt HEq x.based_colift y.based_colift
        structure CategoryTheory.CoLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] (P : CategoryTheory.Functor E C) {c : C} {d : C} (f : c d) (src : P ⁻¹ c) :
        Type (max u_2 u_4)

        A lift of a morphism in the base with a fixed source in the fiber of the domain

        Instances For

          HasLift P f y represents the mere existence of a lift of the morphism f with target y.

          Equations
          Instances For

            HasColift P f x represents the mere existence of a lift of the morphism f with source x.

            Equations
            Instances For
              theorem CategoryTheory.BasedLift.hom_ext {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} {g₁ : CategoryTheory.BasedLift P f x y} {g₂ : CategoryTheory.BasedLift P f x y} (h : g₁.hom = g₂.hom) :
              g₁ = g₂

              Two based-lifts of the same base morphism are equal if their underlying morphisms are equal in the domain category.

              instance CategoryTheory.BasedLift.instCoeOutHomValEqObj {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] (P : CategoryTheory.Functor E C) {c : C} {d : C} (f : c d) (x : P ⁻¹ c) (y : P ⁻¹ d) :
              CoeOut (CategoryTheory.BasedLift P f x y) (x y)

              Coercion from BasedLift to the domain category.

              Equations

              BasedLift.tauto regards a morphism g of the domain category E as a based-lift of its image P g under functor P.

              Equations
              Instances For

                A tautological based-lift associated to a given morphism in the domain E.

                Equations

                Regarding a based-lift x ⟶[𝟙 c] y of the identity morphism 𝟙 c as a morphism in the fiber P⁻¹ c .

                Equations

                BasedLift.ofFiberHom regards a morphism in the fiber category P⁻¹ c as a based-lift of the identity morphism of c.

                Equations
                Instances For
                  def CategoryTheory.BasedLift.comp {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {I : C} {J : C} {K : C} {f : I J} {f' : J K} {X : P ⁻¹ I} {Y : P ⁻¹ J} {Z : P ⁻¹ K} (g : CategoryTheory.BasedLift P f X Y) (g' : CategoryTheory.BasedLift P f' Y Z) :

                  The composition of based-lifts

                  Equations
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem CategoryTheory.BasedLift.comp_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {d' : C} {f₁ : c d} {f₂ : d d'} {x : P ⁻¹ c} {y : P ⁻¹ d} {z : P ⁻¹ d'} (g₁ : CategoryTheory.BasedLift P f₁ x y) (g₂ : CategoryTheory.BasedLift P f₂ y z) :
                        (g₁ ≫[l] g₂).hom = CategoryTheory.CategoryStruct.comp g₁.hom g₂.hom

                        The underlying morphism of a composition of based-lifts is the composition of the underlying morphisms.

                        @[simp]
                        theorem CategoryTheory.BasedLift.comp_hom' {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {d' : C} {f₁ : c d} {f₂ : d d'} {x : P ⁻¹ c} {y : P ⁻¹ d} {z : P ⁻¹ d'} {g₁ : CategoryTheory.BasedLift P f₁ x y} {g₂ : CategoryTheory.BasedLift P f₂ y z} {h : CategoryTheory.BasedLift P (CategoryTheory.CategoryStruct.comp f₁ f₂) x z} :
                        (g₁ ≫[l] g₂) = h CategoryTheory.CategoryStruct.comp g₁.hom g₂.hom = h.hom
                        @[simp]
                        theorem CategoryTheory.BasedLift.cast_apply_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {f' : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} (h : f = f') (g : CategoryTheory.BasedLift P f x y) :
                        @[simp]
                        theorem CategoryTheory.BasedLift.cast_symm_apply_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {f' : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} (h : f = f') (g : CategoryTheory.BasedLift P f' x y) :
                        ((CategoryTheory.BasedLift.cast h).symm g).hom = g.hom
                        def CategoryTheory.BasedLift.cast {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {f' : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} (h : f = f') :

                        Casting a based-lift along an equality of the base morphisms induces an equivalence of the based-lifts.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem CategoryTheory.BasedLift.cast_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {f' : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} {g : CategoryTheory.BasedLift P f x y} {h : f = f'} :

                          Casting equivalence along postcomposition with the identity morphism.

                          Equations
                          Instances For

                            Casting equivalence along precomposition with the identity morphism.

                            Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.BasedLift.castOfeqToHom_symm_apply_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} (g : CategoryTheory.BasedLift P (CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ) f) (Fiber.tauto x) y) :
                              (CategoryTheory.BasedLift.castOfeqToHom.symm g).hom = g.hom
                              @[simp]
                              theorem CategoryTheory.BasedLift.castOfeqToHom_apply_hom {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} (g : CategoryTheory.BasedLift P f x y) :
                              (CategoryTheory.BasedLift.castOfeqToHom g).hom = g.hom
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.BasedLift.assoc {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c' : C} {c : C} {d : C} {d' : C} {f₁ : c' c} {f₂ : c d} {f₃ : d d'} {w : P ⁻¹ c'} {x : P ⁻¹ c} {y : P ⁻¹ d} {z : P ⁻¹ d'} (g₁ : CategoryTheory.BasedLift P f₁ w x) (g₂ : CategoryTheory.BasedLift P f₂ x y) (g₃ : CategoryTheory.BasedLift P f₃ y z) :
                                ((g₁ ≫[l] g₂) ≫[l] g₃) = CategoryTheory.BasedLift.castAssoc.invFun (g₁ ≫[l] g₂ ≫[l] g₃)

                                The composition of based-lifts is associative up to casting along equalities of the base morphisms.

                                @[simp]
                                theorem CategoryTheory.BasedLift.assoc_inv {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c' : C} {c : C} {d : C} {d' : C} {f₁ : c' c} {f₂ : c d} {f₃ : d d'} {w : P ⁻¹ c'} {x : P ⁻¹ c} {y : P ⁻¹ d} {z : P ⁻¹ d'} (g₁ : CategoryTheory.BasedLift P f₁ w x) (g₂ : CategoryTheory.BasedLift P f₂ x y) (g₃ : CategoryTheory.BasedLift P f₃ y z) :
                                CategoryTheory.BasedLift.castAssoc.toFun ((g₁ ≫[l] g₂) ≫[l] g₃) = g₁ ≫[l] g₂ ≫[l] g₃
                                instance CategoryTheory.Lift.instCoeOutSigmaHomValEqObj {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} :
                                {a a_1 : C} → {f : a a_1} → {y : P ⁻¹ a_1} → CoeOut (CategoryTheory.Lift P f y) ((x : E) × (x y))
                                Equations
                                • CategoryTheory.Lift.instCoeOutSigmaHomValEqObj = { coe := fun (l : CategoryTheory.Lift P f y) => l.src, l.based_lift.hom }
                                def CategoryTheory.Lift.homOf {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} :
                                {a a_1 : C} → {f : a a_1} → {y : P ⁻¹ a_1} → (g : CategoryTheory.Lift P f y) → g.src y
                                Equations
                                • g.homOf = g.based_lift.hom
                                Instances For
                                  instance CategoryTheory.Lift.instCoeDepHomValEqObjSrc {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} :
                                  {a a_1 : C} → {f : a a_1} → {y : P ⁻¹ a_1} → {g : CategoryTheory.Lift P f y} → CoeDep (CategoryTheory.Lift P f y) g (g.src y)

                                  Regarding a morphism in Lift P f as a morphism in the total category E.

                                  Equations
                                  • CategoryTheory.Lift.instCoeDepHomValEqObjSrc = { coe := g.based_lift.hom }

                                  The type of iso-based-lifts of an isomorphism in the base with fixed source and target.

                                  Instances
                                    theorem CategoryTheory.IsoBasedLift.is_iso_hom {C : Type u_3} {E : Type u_4} [CategoryTheory.Category.{u_5, u_3} C] [CategoryTheory.Category.{u_6, u_4} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} [CategoryTheory.IsIso f] {x : P ⁻¹ c} {y : P ⁻¹ d} [self : CategoryTheory.IsoBasedLift f x y] :
                                    CategoryTheory.IsIso CategoryTheory.IsoBasedLift.toBasedLift.hom
                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      instance CategoryTheory.IsoBasedLift.instIsoOfIsoBasedLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} [CategoryTheory.IsIso f] {x : P ⁻¹ c} {y : P ⁻¹ d} (g : CategoryTheory.IsoBasedLift f x y) :
                                      CategoryTheory.IsIso CategoryTheory.IsoBasedLift.toBasedLift.hom

                                      Any iso-based-lift is in particular an isomorphism.

                                      Equations
                                      • =

                                      Coercion from IsoBasedLift to BasedLift

                                      Equations
                                      • CategoryTheory.IsoBasedLift.instCoeBasedLift = { coe := fun (l : CategoryTheory.IsoBasedLift f x y) => { hom := CategoryTheory.IsoBasedLift.toBasedLift.hom, over := } }
                                      Equations
                                      • g.Inv = { hom := CategoryTheory.inv CategoryTheory.IsoBasedLift.toBasedLift.hom, over := , is_iso_hom := }
                                      Instances For
                                        class CategoryTheory.CartesianBasedLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} (g : CategoryTheory.BasedLift P f x y) :
                                        Type (max (max (max u_1 u_2) u_3) u_4)

                                        A lift g : x ⟶[f] y over a base morphism f is cartesian if for every morphism u in the base and every lift g' : x ⟶[u ≫ f] z over the composite u ≫ f, there is a unique morphism l : y ⟶[u] z over u such that l ≫ g = g'.

                                        Instances
                                          class CategoryTheory.CoCartesianBasedLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} (g : CategoryTheory.BasedLift P f x y) :
                                          Type (max (max (max u_1 u_2) u_3) u_4)

                                          A morphism g : x ⟶[f] y over f is cocartesian if for all morphisms u in the base and g' : x ⟶[f ≫ u] z over the composite f ≫ u, there is a unique morphism l : y ⟶[u] z over u such that g ≫ l = g'.

                                          Instances

                                            gaplift g u g' is the canonical map from a lift g' : x' ⟶[u ≫ f] y to a cartesian lift g of f.

                                            Equations
                                            Instances For
                                              def CategoryTheory.CartesianBasedLift.gaplift' {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c' : C} {c : C} {d : C} {f : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} {x' : P ⁻¹ c'} (g : CategoryTheory.BasedLift P f x y) [CategoryTheory.CartesianBasedLift g] (u : c' c) {f' : c' d} (g' : CategoryTheory.BasedLift P f' x' y) (h : f' = CategoryTheory.CategoryStruct.comp u f) :

                                              A variant of gaplift for g' : x' ⟶[f'] y with casting along f' = u ≫ f baked into the definition.

                                              Equations
                                              Instances For
                                                @[simp]

                                                The composition of the gap lift and the cartesian lift is the given lift

                                                @[simp]

                                                A variant of the gaplift property for equality of the underlying morphisms.

                                                @[simp]

                                                The uniqueness part of the universal property of the gap lift.

                                                @[simp]
                                                theorem CategoryTheory.CartesianBasedLift.gaplift_uniq' {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c' : C} {c : C} {d : C} {f : c d} {x : P ⁻¹ c} {y : P ⁻¹ d} {x' : P ⁻¹ c'} (g : CategoryTheory.BasedLift P f x y) [CategoryTheory.CartesianBasedLift g] {u : c' c} (v : CategoryTheory.BasedLift P u x' x) (v' : CategoryTheory.BasedLift P u x' x) (hv : (v ≫[l] g) = v' ≫[l] g) :
                                                v = v'

                                                A variant of the uniqueness lemma.

                                                @[simp]

                                                The gaplift of any cartesian based-lift with respect to itself is the identity.

                                                A morphism is cartesian if the gap map is unique.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  noncomputable def CategoryTheory.gapmap {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {x : E} {y : E} (g : x y) (gcart : CategoryTheory.CartMor P g) {z : E} (u : P.obj z P.obj x) (g' : CategoryTheory.BasedLift P (CategoryTheory.CategoryStruct.comp u (P.map g)) (Fiber.tauto z) (Fiber.tauto y)) :
                                                  z x

                                                  gapmap g gcart u g' is a unique morphism l over u such that l ≫ g = g'.

                                                  Equations
                                                  Instances For
                                                    @[simp]
                                                    theorem CategoryTheory.gapmap_over {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} E] {P : CategoryTheory.Functor E C} {x : E} {y : E} {g : x y} {gcart : CategoryTheory.CartMor P g} {z : E} {u : P.obj z P.obj x} {g' : CategoryTheory.BasedLift P (CategoryTheory.CategoryStruct.comp u (P.map g)) (Fiber.tauto z) (Fiber.tauto y)} :
                                                    P.map (CategoryTheory.gapmap g gcart u g') = u
                                                    @[simp]

                                                    The composition of the gap map of a map g' and the cartesian lift g is the given map g'.

                                                    class CategoryTheory.CartBasedLifts {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] (P : CategoryTheory.Functor E C) {c : C} {d : C} (f : c d) (src : P ⁻¹ c) (tgt : P ⁻¹ d) extends CategoryTheory.BasedLift :
                                                    Type (max (max (max u_1 u_2) u_3) u_4)

                                                    Given a morphism f in the base category C, the type CartLifts P f src tgt consists of the based-lifts of f with the source src and the target tgt which are cartesian with respect to P.

                                                    Instances
                                                      instance CategoryTheory.instCoeHomOfCartBasedLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} (f : c d) (src : P ⁻¹ c) (tgt : P ⁻¹ d) :
                                                      CoeOut (CategoryTheory.CartBasedLifts P f src tgt) (src tgt)
                                                      Equations
                                                      class CategoryTheory.CartLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} (f : c d) (y : P ⁻¹ d) extends CategoryTheory.Lift :
                                                      Type (max (max (max u_1 u_2) u_3) u_4)

                                                      The type of cartesian lifts of a morphism f with fixed target.

                                                      Instances
                                                        def CategoryTheory.CartLift.homOf {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} {f : c d} {y : P ⁻¹ d} (g : CategoryTheory.CartLift f y) :
                                                        CategoryTheory.CartLift.toLift.src y
                                                        Equations
                                                        • g.homOf = CategoryTheory.CartLift.toLift.based_lift.hom
                                                        Instances For
                                                          Equations
                                                          • CategoryTheory.instCoeLiftOfCartLift = { coe := fun (l : CategoryTheory.CartLift f y) => CategoryTheory.CartLift.toLift }
                                                          class CategoryTheory.CoCartLift {C : Type u_1} {E : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} E] {P : CategoryTheory.Functor E C} {c : C} {d : C} (f : c d) (x : P ⁻¹ c) extends CategoryTheory.CoLift :
                                                          Type (max (max (max u_1 u_2) u_3) u_4)
                                                          Instances

                                                            Mere existence of a cartesian lift with fixed target.

                                                            Equations
                                                            Instances For
                                                              @[reducible, inline]
                                                              Equations
                                                              Instances For

                                                                The subcategory of cartesian morphisms.

                                                                Equations

                                                                The forgetful functor from the category of cartesian morphisms to the domain category.

                                                                Equations
                                                                Instances For