Documentation

GroupoidModel.Grothendieck.Groupoidal

The Groupidal Grothendieck construction #

↑Grothendieck (toCat A) -- toPGrpd --> PGrpd | | | | ↑ Grothendieck.forget PGrpd.forgetToGrpd | | v v ↑Γ--------------A---------------> Grpd

Main definitions #

Main statements #

@[reducible, inline]
abbrev CategoryTheory.Grothendieck.Groupoidal {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C Grpd) :
Type (max u₁ u₂)

In Mathlib.CategoryTheory.Grothendieck we find the Grothendieck construction for the functors F : C ⥤ Cat. Given a functor F : G ⥤ Grpd, we show that the Grothendieck construction of the composite F ⋙ Grpd.forgetToCat, where forgetToCat : Grpd ⥤ Cat is the embedding of groupoids into categories, is a groupoid.

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.

      The inclusion of a fiber F.obj c of a functor F : C ⥤ Cat into its groupoidal Grothendieck construction.

      Equations
      Instances For

        The groupoidal Grothendieck construction is functorial: a natural transformation α : F ⟶ G induces a functor Groupoidal.map : Groupoidal F ⥤ Groupoidal G.

        Equations
        Instances For
          theorem CategoryTheory.Grothendieck.Groupoidal.map_obj {C : Type u} [Groupoid C] {F G : Functor C Grpd} {α : F G} (X : Groupoidal F) :
          (map α).obj X = { base := X.base, fiber := (α.app X.base).obj X.fiber }

          Applying a functor G : D ⥤ C to the base of the groupoidal Grothendieck construction induces a functor Groupoidal (G ⋙ F) ⥤ Groupoidal F.

          Equations
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def CategoryTheory.Grothendieck.Groupoidal.Map (Δ : Grpd) (Γ : Grpd) (σ : Functor Δ Γ) (A : Functor (↑Γ) Grpd) (B : Functor (Groupoidal A) Grpd) :
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The universal lift var' : Grothendieck(Groupoid.compForgetToCat A) ⟶ Grothendieck(Grpd.forgetToCat) given by pullback pasting in the following pasting diagram.

                  ↑Grothendieck (Groupoid.compForgetToCat A) .-.-.-.-> ↑GrothendieckForgetToCat -----> ↑PCat.{u,u} | | | | | | ↑ Grothendieck.forget ↑Grothendieck.forget ↑PCat.forgetToCat | | | v v v ↑Γ----------------------> ↑Grpd.{u,u} ----------------> ↑Cat.{u,u}

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The following square is a pullback ↑Grothendieck (Groupoid.compForgetToCat A) ------- var' -------> ↑Grothendieck Grpd.forgetToCat | | | | ↑ Grothendieck.forget ↑Grothendieck.forget | | v v ↑Γ--------------↑A----------------------------> ↑Grpd.{u,u}

                    by pullback pasting

                    ↑Grothendieck (Groupoid.compForgetToCat A) --> ↑Grothendieck Grpd.forgetToCat ---> ↑PCat.{u,u} | | | | | | ↑ Grothendieck.forget ↑Grothendieck.forget ↑PCat.forgetToCat | | | v v v ↑Γ----------------------> ↑Grpd.{u,u} ----------------> ↑Cat.{u,u}

                    @[simp]
                    theorem CategoryTheory.Grothendieck.Groupoidal.ιCompPre {Γ : Type u₂} [Category.{v₂, u₂} Γ] {Δ : Type u₃} [Category.{v₃, u₃} Δ] (σ : Functor Δ Γ) (A : Functor Γ Grpd) (x : Δ) :
                    (ι (σ.comp A) x).comp (pre A σ) = ι A (σ.obj x)

                    sec is the universal lift in the following diagram, which is a section of Groupoidal.forget α ===== Γ -------α--------------¬ ‖ ↓ sec V ‖ M.ext A ⋯ -------------> PGrpd ‖ | | ‖ | | ‖ forget forgetToGrpd ‖ | | ‖ V V ===== Γ --α ≫ forgetToGrpd--> Grpd

                    Equations
                    Instances For
                      @[simp]
                      Equations
                      Instances For