Here we construct the natural model for groupoids.
Equations
Instances For
Equations
- instsGrpdSmallCategory = CategoryTheory.ULiftHom.category
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
PshsGrpd :
CategoryTheory.Functor (CategoryTheory.Functor CategoryTheory.Grpdᵒᵖ (Type (u + 1)))
(CategoryTheory.Functor sGrpdᵒᵖ (Type (u + 1)))
Equations
- PshsGrpd = (CategoryTheory.whiskeringLeft sGrpdᵒᵖ CategoryTheory.Grpdᵒᵖ (Type (?u.15 + 1))).obj SmallGrpd.forget.op
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- groupoidULift = CategoryTheory.Groupoid.mk (fun {X Y : ULift.{?u.20, ?u.22} α} (f : X ⟶ Y) => CategoryTheory.Groupoid.inv f) ⋯ ⋯
Equations
- groupoidULiftHom = CategoryTheory.Groupoid.mk (fun {X Y : CategoryTheory.ULiftHom α} (f : X ⟶ Y) => { down := CategoryTheory.Groupoid.inv f.down }) ⋯ ⋯
Equations
- (Groupoid2.small A).toLarge = { α := CategoryTheory.ULiftHom (ULift.{?u.152 + 1, ?u.152} ↑A), str := inferInstance }
- (Groupoid2.large A).toLarge = A
Instances For
A model of Grpd with an internal universe, with the property that the small universe injects into the large one.
Instances For
def
PolyDataGet
(Γ : sGrpdᵒᵖ)
(Q : ((CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Ty).obj Γ)
:
CategoryTheory.yoneda.obj (Opposite.unop Γ) ⟶ (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Ty
Equations
- PolyDataGet Γ Q = CategoryTheory.yonedaEquiv.invFun Q
Instances For
def
GroupoidSigma
{Γ : CategoryTheory.Grpd}
(A : CategoryTheory.Functor (↑Γ) CategoryTheory.Grpd)
(B : CategoryTheory.Functor (CategoryTheory.GroupoidalGrothendieck A) CategoryTheory.Grpd)
:
Instances For
Equations
- One or more equations did not get rendered due to their size.