Equations
- One or more equations did not get rendered due to their size.
Instances For
Universe level bound helpers #
Extension sequences #
s.ExtSeq Ξ Ξ'
is a diff from the semantic context Ξ
to Ξ'
,
where Ξ
is a prefix of Ξ'
.
It witnesses a sequence of context extension operations in s
that built Ξ'
on top of Ξ
.
We write Ξ β€ Ξ'
.
- nil {π : Type u} [CategoryTheory.SmallCategory π] [CategoryTheory.ChosenTerminal π] {s : UHomSeq π} {Ξ : π} : s.ExtSeq Ξ Ξ
- snoc {π : Type u} [CategoryTheory.SmallCategory π] [CategoryTheory.ChosenTerminal π] {s : UHomSeq π} {Ξ Ξ' : π} {l : β} (d : s.ExtSeq Ξ Ξ') (llen : l < s.length + 1) (A : CategoryTheory.yoneda.obj Ξ' βΆ s[l].Ty) : s.ExtSeq Ξ (s[l].ext A)
Instances For
Instances For
Equations
Instances For
The composite display map associated to a sequence.
Equations
Instances For
Weaken a substitution and its domain by an extension sequence.
Ξ β’ Ο : Ξ d : Ξ β€ Ξ'
-----------------------------
Ξ β€ Ξ.d[Ο] Ξ.d[Ο] β’ Ο.d : Ξ'
where
Ξ β’ Ο : Ξ d : Ξ β€ Ξ.Aβ.β¦.Aβ
-----------------------------
Ξ.d[Ο] β‘ Ξ.Aβ[Ο].β¦.Aβ[β―]
Equations
- One or more equations did not get rendered due to their size.
- NaturalModel.Universe.UHomSeq.ExtSeq.substWk Ο NaturalModel.Universe.UHomSeq.ExtSeq.nil = β¨Ξ, (NaturalModel.Universe.UHomSeq.ExtSeq.nil, Ο)β©
Instances For
Ξ.Aβ.β¦.Aβ β’ vβ : Aβ[ββΏβΊΒΉ]
Equations
- One or more equations did not get rendered due to their size.
- NaturalModel.Universe.UHomSeq.ExtSeq.var llen NaturalModel.Universe.UHomSeq.ExtSeq.nil xβ = Part.none
Instances For
Ξ.Aβ.β¦.Aβ β’ Aβ[ββΏβΊΒΉ]
Equations
- One or more equations did not get rendered due to their size.
- NaturalModel.Universe.UHomSeq.ExtSeq.tp llen NaturalModel.Universe.UHomSeq.ExtSeq.nil xβ = Part.none
Instances For
Contextual objects #
A "contextual" object (as in Cartmell's contextual categories),
i.e., one of the form 1.Aβββ.β¦.Aβ
,
together with the extension sequence [Aβββ :: β¦ :: Aβ]
.
This kind of object can be destructured.
Equations
- s.CObj = ((Ξ : π) Γ s.ExtSeq CategoryTheory.ChosenTerminal.terminal Ξ)
Instances For
Equations
Instances For
Instances For
Equations
Instances For
Equations
- Ξ.var llen i = NaturalModel.Universe.UHomSeq.ExtSeq.var llen Ξ.snd i
Instances For
Equations
- Ξ.tp llen i = NaturalModel.Universe.UHomSeq.ExtSeq.tp llen Ξ.snd i
Instances For
Interpretation #
An interpretation of a signature consists of a semantic term for each named axiom.
This is the semantic equivalent of Axioms Ο
.
Instances For
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
- I.ofTerm Ξ l (Expr.bvar i) x = Ξ.var x i
- I.ofTerm Ξ l (Expr.refl l_1 t) x = do let t β I.ofTerm Ξ l t x pure (s.mkRefl x t)
- I.ofTerm Ξ l t.code x = Part.assert (0 < l) fun (lpos : 0 < l) => do let A β I.ofType Ξ (l - 1) t β― pure (cast β― (s.code β― A))
- I.ofTerm Ξ l x x_1 = Part.none
Instances For
Equations
Instances For
Semantic substitutions #
An inductive characterization of those semantic substitutions that appear in syntactic operations. We use this as an auxiliary device in the proof of semantic substitution admissibility.
The family with full = false
characterizes renamings,
whereas full = true
contains general substitutions
but where composition is limited to renamings on the left.
- id {π : Type u} [CategoryTheory.SmallCategory π] [CategoryTheory.ChosenTerminal π] {s : UHomSeq π} {Ο : Type u_1} {I : Interpretation Ο s} [s.PiSeq] [s.SigSeq] [s.IdSeq] (Ξ : s.CObj) (full : Bool := true) : I.CSb Ξ Ξ (CategoryTheory.CategoryStruct.id Ξ.fst) full
- wk {π : Type u} [CategoryTheory.SmallCategory π] [CategoryTheory.ChosenTerminal π] {s : UHomSeq π} {Ο : Type u_1} {I : Interpretation Ο s} [s.PiSeq] [s.SigSeq] [s.IdSeq] {Ξ : s.CObj} {l : β} (llen : l < s.length + 1) (A : CategoryTheory.yoneda.obj Ξ.fst βΆ s[l].Ty) (full : Bool := true) : I.CSb (Ξ.snoc llen A) Ξ (s[l].disp A) full
- comp {π : Type u} [CategoryTheory.SmallCategory π] [CategoryTheory.ChosenTerminal π] {s : UHomSeq π} {Ο : Type u_1} {I : Interpretation Ο s} [s.PiSeq] [s.SigSeq] [s.IdSeq] {Ξ Ξ Ξ : s.CObj} {Ο : Ξ.fst βΆ Ξ.fst} {Ο : Ξ.fst βΆ Ξ.fst} {full : Bool} : I.CSb Ξ Ξ Ο false β I.CSb Ξ Ξ Ο full β I.CSb Ξ Ξ (CategoryTheory.CategoryStruct.comp Ο Ο) full
- snoc' {π : Type u} [CategoryTheory.SmallCategory π] [CategoryTheory.ChosenTerminal π] {s : UHomSeq π} {Ο : Type u_1} {I : Interpretation Ο s} [s.PiSeq] [s.SigSeq] [s.IdSeq] {Ξ Ξ : s.CObj} {Ο : Ξ.fst βΆ Ξ.fst} {full : Bool} : I.CSb Ξ Ξ Ο full β {l : β} β (llen : l < s.length + 1) β (A : CategoryTheory.yoneda.obj Ξ.fst βΆ s[l].Ty) β (e : Expr Ο) β (hf : Β¬full = true β β (i : β), e = Expr.bvar i) β {se : CategoryTheory.yoneda.obj Ξ.fst βΆ s[l].Tm} β (eq : CategoryTheory.CategoryStruct.comp se s[l].tp = CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map Ο) A) β (H : se β I.ofTerm Ξ l e llen) β I.CSb Ξ (Ξ.snoc llen A) (s[l].substCons Ο A se eq) full
Instances For
Equations
Instances For
Instances For
Equations
- NaturalModel.Universe.Interpretation.CSb.sub1 llen A e eq H = (NaturalModel.Universe.Interpretation.CSb.id Ξ).snoc llen A e β― H
Instances For
Equations
Instances For
Admissibility of substitution #
Soundness of interpretation #
Instances For
Equations
Instances For
Equations
Instances For
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
I
is a well-formed interpretation of the axiom environment E
.
- ax {c : Ο} {Al : { Al : Expr Ο Γ β // Expr.isClosed 0 Al.1 = true β§ Al.2 β€ univMax }} (Ec : E c = some Al) : β (sc : CategoryTheory.yoneda.obj CategoryTheory.ChosenTerminal.terminal βΆ s[(βAl).2].Tm), I.ax c (βAl).2 β― = some sc β§ β sA β I.ofType s.nilCObj (βAl).2 (βAl).1 β―, CategoryTheory.CategoryStruct.comp sc s[(βAl).2].tp = sA
Instances For
Interpretation API #
Given Ξ
s.t. WfCtx Ξ
, return β¦Ξβ§
.
Equations
- NaturalModel.Universe.Interpretation.interpCtx H = (I.ofCtx Ξ).get β―
Instances For
Given Ξ, l, A
s.t. Ξ β’[l] A
, return β¦Aβ§_β¦Ξβ§
.
Equations
- NaturalModel.Universe.Interpretation.interpTy H = (I.ofType (NaturalModel.Universe.Interpretation.interpCtx β―) l A β―).get β―
Instances For
Given Ξ, l, t, A
s.t. Ξ β’[l] t : A
, return β¦tβ§_β¦Ξβ§
.
Equations
- NaturalModel.Universe.Interpretation.interpTm H = (I.ofTerm (NaturalModel.Universe.Interpretation.interpCtx β―) l t β―).get β―
Instances For
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.