Documentation

Mathlib.CategoryTheory.Sites.CompatibleSheafification

In this file, we prove that sheafification is compatible with functors which preserve the correct limits and colimits.

noncomputable def CategoryTheory.GrothendieckTopology.sheafifyCompIso {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w₁} [Category.{max v u, w₁} D] {E : Type w₂} [Category.{max v u, w₂} E] (F : Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) E] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F] [∀ (X : C) (W : J.Cover X) (P : Functor Cᵒᵖ D), Limits.PreservesLimit (W.index P).multicospan F] (P : Functor Cᵒᵖ D) :

The isomorphism between the sheafification of P composed with F and the sheafification of P ⋙ F.

Use the lemmas whisker_right_to_sheafify_sheafify_comp_iso_hom, to_sheafify_comp_sheafify_comp_iso_inv and sheafify_comp_iso_inv_eq_sheafify_lift to reduce the components of this isomorphisms to a state that can be handled using the universal property of sheafification.

Equations
Instances For
    noncomputable def CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w₁} [Category.{max v u, w₁} D] {E : Type w₂} [Category.{max v u, w₂} E] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) E] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E] (P : Functor Cᵒᵖ D) [∀ (F : Functor D E) (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F] [∀ (F : Functor D E) (X : C) (W : J.Cover X) (P : Functor Cᵒᵖ D), Limits.PreservesLimit (W.index P).multicospan F] :

    The isomorphism between the sheafification of P composed with F and the sheafification of P ⋙ F, functorially in F.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso_hom_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w₁} [Category.{max v u, w₁} D] {E : Type w₂} [Category.{max v u, w₂} E] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) E] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E] (P : Functor Cᵒᵖ D) (F : Functor D E) [∀ (F : Functor D E) (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F] [∀ (F : Functor D E) (X : C) (W : J.Cover X) (P : Functor Cᵒᵖ D), Limits.PreservesLimit (W.index P).multicospan F] :
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso_inv_app {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w₁} [Category.{max v u, w₁} D] {E : Type w₂} [Category.{max v u, w₂} E] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) E] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E] (P : Functor Cᵒᵖ D) (F : Functor D E) [∀ (F : Functor D E) (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F] [∀ (F : Functor D E) (X : C) (W : J.Cover X) (P : Functor Cᵒᵖ D), Limits.PreservesLimit (W.index P).multicospan F] :
      noncomputable def CategoryTheory.GrothendieckTopology.sheafificationWhiskerRightIso {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type w₁} [Category.{max v u, w₁} D] {E : Type w₂} [Category.{max v u, w₂} E] (F : Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), Limits.HasLimitsOfShape (Limits.WalkingMulticospan fst snd) E] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F] [∀ (X : C) (W : J.Cover X) (P : Functor Cᵒᵖ D), Limits.PreservesLimit (W.index P).multicospan F] :

      The isomorphism between the sheafification of P composed with F and the sheafification of P ⋙ F, functorially in P.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]