Documentation

Mathlib.Data.NNRat.Defs

Nonnegative rationals #

This file defines the nonnegative rationals as a subtype of Rat and provides its basic algebraic order structure.

Note that NNRat is not declared as a Semifield here. See Mathlib.Algebra.Field.Rat for that instance.

We also define an instance CanLift ℚ ℚ≥0. This instance can be used by the lift tactic to replace x : ℚ and hx : 0 ≤ x in the proof context with x : ℚ≥0 while replacing all occurrences of x with ↑x. This tactic also works for a function f : α → ℚ with a hypothesis hf : ∀ x, 0 ≤ f x.

Notation #

ℚ≥0 is notation for NNRat in locale NNRat.

Huge warning #

Whenever you state a lemma about the coercion ℚ≥0 → ℚ, check that Lean inserts NNRat.cast, not Subtype.val. Else your lemma will never apply.

@[simp]
theorem NNRat.val_eq_cast (q : ℚ≥0) :
q = q
theorem NNRat.ext {p q : ℚ≥0} :
p = qp = q
@[simp]
theorem NNRat.coe_inj {p q : ℚ≥0} :
p = q p = q
theorem NNRat.ne_iff {x y : ℚ≥0} :
@[simp]
theorem NNRat.coe_mk (q : ) (hq : 0 q) :
theorem NNRat.forall {p : ℚ≥0Prop} :
(∀ (q : ℚ≥0), p q) ∀ (q : ) (hq : 0 q), p q, hq
theorem NNRat.exists {p : ℚ≥0Prop} :
( (q : ℚ≥0), p q) (q : ), (hq : 0 q), p q, hq

Reinterpret a rational number q as a non-negative rational number. Returns 0 if q ≤ 0.

Equations
Instances For
    theorem Rat.coe_toNNRat (q : ) (hq : 0 q) :
    @[simp]
    theorem NNRat.coe_nonneg (q : ℚ≥0) :
    0 q
    @[simp]
    @[simp]
    theorem NNRat.num_zero :
    num 0 = 0
    @[simp]
    theorem NNRat.den_zero :
    den 0 = 1
    @[simp]
    @[simp]
    theorem NNRat.num_one :
    num 1 = 1
    @[simp]
    theorem NNRat.den_one :
    den 1 = 1
    @[simp]
    theorem NNRat.coe_add (p q : ℚ≥0) :
    (p + q) = p + q
    @[simp]
    theorem NNRat.coe_mul (p q : ℚ≥0) :
    (p * q) = p * q
    @[simp]
    theorem NNRat.coe_pow (q : ℚ≥0) (n : ) :
    @[simp]
    theorem NNRat.num_pow (q : ℚ≥0) (n : ) :
    @[simp]
    theorem NNRat.den_pow (q : ℚ≥0) (n : ) :
    @[simp]
    theorem NNRat.coe_sub {p q : ℚ≥0} (h : q p) :
    (p - q) = p - q
    @[simp]
    theorem NNRat.coe_lt_coe {p q : ℚ≥0} :
    p < q p < q
    theorem NNRat.coe_pos {q : ℚ≥0} :
    0 < q 0 < q
    @[simp]

    Coercion ℚ≥0 → ℚ as a RingHom.

    Equations
    Instances For
      @[simp]
      theorem NNRat.coe_natCast (n : ) :
      @[simp]
      theorem NNRat.nsmul_coe (q : ℚ≥0) (n : ) :
      (n q) = n q
      theorem NNRat.sub_def (p q : ℚ≥0) :
      @[simp]
      theorem NNRat.abs_coe (q : ℚ≥0) :
      |q| = q
      @[simp]
      @[simp]
      @[simp]
      theorem Rat.toNNRat_pos {q : } :
      @[simp]
      theorem Rat.toNNRat_of_nonpos {q : } :
      q 0q.toNNRat = 0

      Alias of the reverse direction of Rat.toNNRat_eq_zero.

      @[simp]
      @[simp]
      theorem Rat.toNNRat_add {p q : } (hq : 0 q) (hp : 0 p) :
      theorem Rat.toNNRat_lt_iff_lt_coe {q : } {p : ℚ≥0} (hq : 0 q) :
      theorem Rat.toNNRat_mul {p q : } (hp : 0 p) :
      def Rat.nnabs (x : ) :

      The absolute value on as a map to ℚ≥0.

      Equations
      Instances For
        @[simp]
        theorem Rat.coe_nnabs (x : ) :

        Numerator and denominator #

        @[simp]
        @[simp]
        theorem NNRat.num_pos {q : ℚ≥0} :
        @[simp]
        theorem NNRat.den_pos (q : ℚ≥0) :
        @[simp]
        @[simp]
        @[simp]
        @[simp]
        theorem NNRat.ext_num_den {p q : ℚ≥0} (hn : p.num = q.num) (hd : p.den = q.den) :
        p = q
        def NNRat.divNat (n d : ) :

        Form the quotient n / d where n d : ℕ.

        See also Rat.divInt and mkRat.

        Equations
        Instances For
          @[simp]
          theorem NNRat.coe_divNat (n d : ) :
          (divNat n d) = Rat.divInt n d
          theorem NNRat.mk_divInt (n d : ) :
          Rat.divInt n d, = divNat n d
          theorem NNRat.divNat_inj {n₁ n₂ d₁ d₂ : } (h₁ : d₁ 0) (h₂ : d₂ 0) :
          divNat n₁ d₁ = divNat n₂ d₂ n₁ * d₂ = n₂ * d₁
          @[simp]
          theorem NNRat.divNat_zero (n : ) :
          divNat n 0 = 0
          @[simp]
          theorem NNRat.divNat_mul_divNat (n₁ n₂ : ) {d₁ d₂ : } (hd₁ : d₁ 0) (hd₂ : d₂ 0) :
          divNat n₁ d₁ * divNat n₂ d₂ = divNat (n₁ * n₂) (d₁ * d₂)
          theorem NNRat.divNat_mul_left {a : } (ha : a 0) (n d : ) :
          divNat (a * n) (a * d) = divNat n d
          theorem NNRat.divNat_mul_right {a : } (ha : a 0) (n d : ) :
          divNat (n * a) (d * a) = divNat n d
          @[simp]
          theorem NNRat.mul_den_eq_num (q : ℚ≥0) :
          q * q.den = q.num
          @[simp]
          theorem NNRat.den_mul_eq_num (q : ℚ≥0) :
          q.den * q = q.num
          def NNRat.numDenCasesOn {C : ℚ≥0Sort u} (q : ℚ≥0) (H : (n d : ) → d 0n.Coprime dC (divNat n d)) :
          C q

          Define a (dependent) function or prove ∀ r : ℚ, p r by dealing with nonnegative rational numbers of the form n / d with d ≠ 0 and n, d coprime.

          Equations
          Instances For